Picard Groups and Duality in Chromatic Homotopy Theory at the Prime 2.
素数色同伦理论中的皮卡德群和对偶性 2。
基本信息
- 批准号:2005627
- 负责人:
- 金额:$ 16.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algebraic topology studies shapes of objects and aims to answer the question: how can we tell whether two objects are similar? In this field two objects are considered to be similar if one of them can be continuously deformed into the other. There are many examples which can be approached from the geometric point of view: famously, a mug can be continuously deformed into a donut. But we are only able to explicitly visualize objects which lie in spaces of small dimension, up to 3 dimensions. In order to study objects lying in spaces of larger dimension we need to approach the problem through the lens of algebra. Algebraic topology assigns various algebraic invariants to geometric objects and shapes in such a way that similar objects will have the same invariant. Then, given two objects, we only need to compute their invariants in order to be able to distinguish them. Algebraic topology itself is a theoretical subject which develops new such invariants for understanding shapes, and studies their properties. But the tools of algebraic topology work equally well regardless of the dimension of the ambient space, or the size of the objects. Due to this, they have numerous applications in physics, since problems in quantum physics and relativity deal with objects in spaces of high dimension. These algebraic invariants can also be applied to problems in the analysis of large data. A large data set is an object in a space of very many dimensions, and since tools of algebraic topology are insensitive to dimension, they are well suited to exhibit useful properties of large data sets which might be difficult to see with classical statistical tools. Broader impacts under this award include seminar organization and events promoting the participation of women in mathematics.These research projects concern chromatic homotopy theory, which is a framework for identifying and explaining periodic phenomena in stable homotopy groups of spheres. It introduces a filtration on the stable homotopy category, and proposes to study the problem one chromatic level and one prime at a time. Most of the current work in this field is focused on chromatic level 2, with prime 2 being the hardest case. A collaborative project will compute the Picard group of the K(2)-local category at the prime 2 and use this information to find the dualizing object for the K(2)-local BrownComenetz duality. Another project plans to use SpanierWhitehead duality in the K(2)-local category to prove a decomposition result for the K(2)-local sphere spectrum. An additional collaborative effort aims to compute the Picard groups of categories of modules over certain ring spectra in chromatic homotopy theory, computing the homotopy groups of K(2)-local spectra of interest and studying the transchromatic phenomena in GrossHopkins duality.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数拓扑学研究对象的形状,目的是回答这样一个问题:我们如何区分两个对象是否相似?在这个领域中,如果两个物体中的一个可以连续变形成另一个,则认为它们是相似的。有许多例子可以从几何的角度来处理:著名的是,一个杯子可以连续地变形成一个甜甜圈。但我们只能显式地想象存在于小维度空间中的物体,最多可达3个维度。为了研究位于更大维度空间中的物体,我们需要通过代数的透镜来处理这个问题。代数拓扑学将各种代数不变量赋给几何对象和形状,使得相似的对象具有相同的不变量。然后,在给定两个对象的情况下,我们只需要计算它们的不变量就可以区分它们。代数拓扑学本身就是一门理论学科,它为理解形状发展了新的不变量,并研究了它们的性质。但是,无论环境空间的大小或对象的大小,代数拓扑学的工具都同样有效。正因为如此,它们在物理学中有许多应用,因为量子物理和相对论中的问题涉及高维空间中的对象。这些代数不变量也可以应用于大数据分析中的问题。大数据集是非常多维空间中的对象,由于代数拓扑工具对维度不敏感,它们非常适合展示大数据集的有用性质,这些性质可能是传统统计工具难以看到的。该奖项的更广泛影响包括促进妇女参与数学的研讨会组织和活动。这些研究项目涉及色同伦理论,该理论是识别和解释球体稳定同伦群中的周期现象的框架。在稳定同伦范畴上引入了一个滤子,并提出了一次一个色级和一个素数的研究方法。目前在这个领域的大部分工作都集中在色度水平2上,素数2是最困难的情况。一个合作项目将在素数2处计算K(2)-局部范畴的Picard群,并使用这些信息来寻找K(2)-局部BrownComenetz对偶的对偶对象。另一个项目计划利用K(2)-局部范畴中的西班牙-怀特黑德对偶来证明K(2)-局部球谱的一个分解结果。另一项合作工作旨在计算色同伦理论中某些环谱上的模范类的Picard群,计算感兴趣的K(2)-局部谱的同伦群,并研究GrossHopkins对偶中的变色现象。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The topological modular forms of RP2$\mathbb {R}P^2$ and RP2∧CP2$\mathbb {R}P^2 \wedge \mathbb {C}P^2$
RP2$mathbb {R}P^2$ 和 RP2â§CP2$mathbb {R}P^2 wedge mathbb {C}P^2$ 的拓扑模形式
- DOI:10.1112/topo.12263
- 发表时间:2022
- 期刊:
- 影响因子:1.1
- 作者:Beaudry, Agnès;Bobkova, Irina;Pham, Viet‐Cuong;Xu, Zhouli
- 通讯作者:Xu, Zhouli
The $P^1_2$ margolis homology of connective topological modular forms
联结拓扑模形式的 $P^1_2$ margolis 同源性
- DOI:10.4310/hha.2021.v23.n2.a21
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Bhattacharya, Prasit;Bobkova, Irina;Thomas, Brian
- 通讯作者:Thomas, Brian
Spanier–Whitehead duality in the $K(2)$-local category at $p=2$
$p=2$ 处 $K(2)$-局部类别中的 Spanier 与 Whitehead 对偶性
- DOI:10.1090/proc/15078
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Bobkova, Irina
- 通讯作者:Bobkova, Irina
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irina Bobkova其他文献
[Role of the mechanisms of replicative cellular senescence in structural and functional changes of the vascular wall in chronic kidney disease].
复制性细胞衰老机制在慢性肾脏病血管壁结构和功能变化中的作用。
- DOI:
10.17116/terarkh2017896102-109 - 发表时间:
2017 - 期刊:
- 影响因子:0.3
- 作者:
T. Rudenko;Irina Bobkova;E. Kamyshova;I. Gorelova - 通讯作者:
I. Gorelova
The duality resolution at $$n=p=2$$
- DOI:
10.1007/s00209-025-03754-2 - 发表时间:
2025-05-08 - 期刊:
- 影响因子:1.000
- 作者:
Agnès Beaudry;Irina Bobkova;Hans-Werner Henn - 通讯作者:
Hans-Werner Henn
Heat shock proteins and kidney disease: perspectives of HSP therapy
- DOI:
10.1007/s12192-017-0790-0 - 发表时间:
2017-04-13 - 期刊:
- 影响因子:3.200
- 作者:
Natalia Chebotareva;Irina Bobkova;Evgeniy Shilov - 通讯作者:
Evgeniy Shilov
Bounding the $K(p-1)$-local exotic Picard group at $p>3$
将 $K(p-1)$-本地异域 Picard 组限制在 $p>3$
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Irina Bobkova;Andrea Lachmann;Ang Li;Alicia Lima;Vesna Stojanoska;Adela YiYu Zhang - 通讯作者:
Adela YiYu Zhang
Irina Bobkova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irina Bobkova', 18)}}的其他基金
CAREER: Decomposition, duality and Picard groups in chromatic homotopy theory
职业:色同伦理论中的分解、对偶性和皮卡德群
- 批准号:
2239362 - 财政年份:2023
- 资助金额:
$ 16.6万 - 项目类别:
Continuing Grant
Conference on Chromatic Homotopy Theory and Related Areas
色同伦理论及相关领域会议
- 批准号:
2220741 - 财政年份:2022
- 资助金额:
$ 16.6万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Decomposition, duality and Picard groups in chromatic homotopy theory
职业:色同伦理论中的分解、对偶性和皮卡德群
- 批准号:
2239362 - 财政年份:2023
- 资助金额:
$ 16.6万 - 项目类别:
Continuing Grant
Representation theory of elliptic quantum groups and symplectic duality
椭圆量子群和辛对偶性的表示论
- 批准号:
20K03507 - 财政年份:2020
- 资助金额:
$ 16.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Around Langlands duality for representations of affine Kac-Moody groups
仿射 Kac-Moody 群表示的朗兰兹对偶性
- 批准号:
1200807 - 财政年份:2012
- 资助金额:
$ 16.6万 - 项目类别:
Continuing Grant
Duality theories of topological groups and topological algebras
拓扑群和拓扑代数的对偶理论
- 批准号:
341291-2007 - 财政年份:2011
- 资助金额:
$ 16.6万 - 项目类别:
Discovery Grants Program - Individual
Duality theories of topological groups and topological algebras
拓扑群和拓扑代数的对偶理论
- 批准号:
341291-2007 - 财政年份:2010
- 资助金额:
$ 16.6万 - 项目类别:
Discovery Grants Program - Individual
Two-parameter quantum groups and Schur-Weyl duality
双参数量子群和 Schur-Weyl 对偶性
- 批准号:
398830-2010 - 财政年份:2010
- 资助金额:
$ 16.6万 - 项目类别:
University Undergraduate Student Research Awards
Duality theories of topological groups and topological algebras
拓扑群和拓扑代数的对偶理论
- 批准号:
341291-2007 - 财政年份:2009
- 资助金额:
$ 16.6万 - 项目类别:
Discovery Grants Program - Individual
Towards Langlands duality for affine Kac-Moody groups
仿射 Kac-Moody 群的朗兰兹对偶性
- 批准号:
0901274 - 财政年份:2009
- 资助金额:
$ 16.6万 - 项目类别:
Standard Grant
Duality theories of topological groups and topological algebras
拓扑群和拓扑代数的对偶理论
- 批准号:
341291-2007 - 财政年份:2008
- 资助金额:
$ 16.6万 - 项目类别:
Discovery Grants Program - Individual
Duality theories of topological groups and topological algebras
拓扑群和拓扑代数的对偶理论
- 批准号:
341291-2007 - 财政年份:2007
- 资助金额:
$ 16.6万 - 项目类别:
Discovery Grants Program - Individual