CAREER: Understanding the Nature of Dark Energy with the Young Supernova Experiment and the Legacy Survey of Space and Time
职业:通过年轻超新星实验和时空遗产调查了解暗能量的本质
基本信息
- 批准号:2239364
- 负责人:
- 金额:$ 71.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The investigator seeks to accurately determine the two numbers describing the expansion of our Universe. The first, the "Hubble constant", is a measure of the rate of the expansion of the Universe today. The second describes the equation-of-state of “Dark Energy”. Dark Energy is required to explain the increasing rate of expansion of the Universe. Some rare, bright, exploding stars, called "type Ia supernovae" (SN Ia), are perfectly suited to this task. Each of these supernovae provides us a single measurement of the size of the Universe at the instant that the star died. Using a new observational project, the Young Supernova Experiment (YSE), the investigator will measure the most uniform sample of SN Ia in the nearby Universe. The investigator will use this sample to develop novel methods of determining the cosmological parameters. With a team of citizen scientists, the investigator will develop new tools to identify type Ia supernovae in the distant Universe, using observations from NSF’s Vera C. Rubin Observatory. Where YSE will find thousands of supernovae, the Rubin Observatory survey, called the Legacy Survey of Space and Time (LSST), will discover hundreds of thousands. The investigator will also involve schools and citizen scientists in this research. The investigator will place the observations on the public Zooniverse platform and create Jupyter Notebooks for instruction for local students, including the “Women Astronomy Summer Camp” and “Girls who Code” groups. They will recruit students from underserved communities in the greater Central Illinois Region, teaching them machine learning and data science using the material developed in this research.The investigator will use the YSE supernovae together with the sample from LSST. With an anticipated 1.6% measurement accuracy of the Hubble constant and sub-percent measurement of the equation-of-state of Dark Energy, the investigator will connect the nearby to the distant Universe. Citizen-science is central to the research plan. The investigator will use the Zooniverse platform to identify the host-galaxies of supernovae for the full sample, providing a valuable cross-check on the performance on automated algorithms. This research award is partially funded by a generous gift from Charles Simonyi to the NSF Astronomy division. The project includes significant contributions to Vera C. Rubin Observatory’s Legacy Survey of Space and Time.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
研究人员试图准确地确定描述我们宇宙膨胀的两个数字。第一个是“哈勃常数”,它是衡量当今宇宙膨胀速度的一个指标。第二部分描述了“暗能量”的状态方程。 暗能量是用来解释宇宙膨胀速度的增加。一些罕见的明亮的爆炸恒星,称为“Ia型超新星”(SN Ia),非常适合这项任务。这些超新星中的每一颗都为我们提供了星星死亡瞬间宇宙大小的单一测量值。利用一个新的观测项目,年轻超新星实验(YSE),研究人员将测量附近宇宙中最均匀的超新星样本。研究人员将利用这个样本来开发确定宇宙学参数的新方法。在一个由公民科学家组成的团队中,研究人员将开发新的工具来识别遥远宇宙中的Ia型超新星,使用NSF的Vera C。鲁宾天文台。YSE将发现数千颗超新星,鲁宾天文台的调查,称为空间和时间的遗产调查(LSST),将发现数十万颗。 研究人员还将让学校和公民科学家参与这项研究。 研究人员将把观察结果放在公共的Zooniverse平台上,并为当地学生制作一本笔记本,包括“妇女天文学夏令营”和“编码女孩”小组。他们将从伊利诺伊州中部地区服务不足的社区招募学生,使用本研究开发的材料教授他们机器学习和数据科学。研究人员将使用YSE超新星和LSST样本。预计哈勃常数的测量精度为1.6%,暗能量状态方程的测量精度低于1%,研究人员将把附近的宇宙与遥远的宇宙联系起来。公民科学是研究计划的核心。研究人员将使用Zooniverse平台来识别超新星的宿主星系,以获得完整的样本,为自动算法的性能提供有价值的交叉检查。该研究奖的部分资金来自Charles Simonyi向NSF天文学部门的慷慨捐赠。 该项目包括对Vera C. Rubin Observatory's Legacy Survey of Space and Time.该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gautham Narayan其他文献
Preliminary Report on Mantis Shrimp: a Multi-Survey Computer Vision Photometric Redshift Model
螳螂虾的初步报告:多重调查计算机视觉光度红移模型
- DOI:
10.48550/arxiv.2402.03535 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Andrew Engel;Gautham Narayan;N. Byler - 通讯作者:
N. Byler
Gautham Narayan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gautham Narayan', 18)}}的其他基金
Frameworks: SCiMMA: Real-time Orchestration of Multi-Messenger Astrophysical Observations
框架:SCiMMA:多信使天体物理观测的实时编排
- 批准号:
2311355 - 财政年份:2023
- 资助金额:
$ 71.76万 - 项目类别:
Standard Grant
Discovering the Most Enigmatic Transient Phenomena in the Time-Domain
发现时域中最神秘的瞬态现象
- 批准号:
2206195 - 财政年份:2022
- 资助金额:
$ 71.76万 - 项目类别:
Standard Grant
相似国自然基金
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Improving the Evidence-Based Design of Nature-based Solutions by Understanding the Trade-Offs and Synergies of Ecosystem Services in a Tropical Develo
通过了解热带开发中生态系统服务的权衡和协同作用,改进基于自然的解决方案的循证设计
- 批准号:
2908202 - 财政年份:2024
- 资助金额:
$ 71.76万 - 项目类别:
Studentship
Contagious by Nature: Understanding Optimisation of Social Networks in Wild Populations
本质上具有传染性:了解野生种群中社交网络的优化
- 批准号:
NE/V013483/2 - 财政年份:2024
- 资助金额:
$ 71.76万 - 项目类别:
Fellowship
Understanding young people's online sexual behaviour, nature, cases, context and consequences
了解青少年的网络性行为、性质、案例、背景和后果
- 批准号:
2888002 - 财政年份:2023
- 资助金额:
$ 71.76万 - 项目类别:
Studentship
Development of weather-dependent adaptive data assimilation method for all-sky satellite radiances for the better understanding of chaotic nature of the atmosphere
开发全天卫星辐射的依赖天气的自适应数据同化方法,以更好地了解大气的混沌性质
- 批准号:
23K13167 - 财政年份:2023
- 资助金额:
$ 71.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Understanding the scaling of impacts of Natural Climate Solutions for people, nature, and the climate
了解自然气候解决方案对人类、自然和气候的影响规模
- 批准号:
2887361 - 财政年份:2023
- 资助金额:
$ 71.76万 - 项目类别:
Studentship
Strengthening Understanding and Strategies of business To Assess and Integrate Nature (SUSTAIN)
加强企业评估和整合自然的理解和战略(持续)
- 批准号:
10038461 - 财政年份:2022
- 资助金额:
$ 71.76万 - 项目类别:
EU-Funded
Contagious by Nature: Understanding Optimisation of Social Networks in Wild Populations
本质上具有传染性:了解野生种群中社交网络的优化
- 批准号:
NE/V013483/1 - 财政年份:2022
- 资助金额:
$ 71.76万 - 项目类别:
Fellowship
RaMP: Understanding Nature and Los Angeles Biodiversity (UNLAB) through Museum Collections and Field-based Research
RaMP:通过博物馆藏品和实地研究了解自然和洛杉矶生物多样性 (UNLAB)
- 批准号:
2216721 - 财政年份:2022
- 资助金额:
$ 71.76万 - 项目类别:
Standard Grant
Strengthening Understanding and Strategies of business To Assess and Integrate Nature
加强企业评估和整合自然的理解和战略
- 批准号:
10075763 - 财政年份:2022
- 资助金额:
$ 71.76万 - 项目类别:
EU-Funded
Strengthening Understanding and Strategies of Business to Assess and Integrate Nature
加强企业评估和整合自然的理解和战略
- 批准号:
10046192 - 财政年份:2022
- 资助金额:
$ 71.76万 - 项目类别:
EU-Funded