CAREER: Advancing Adversarial Robustness of Natural Language Generation Systems
职业:提高自然语言生成系统的对抗鲁棒性
基本信息
- 批准号:2239646
- 负责人:
- 金额:$ 56.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Decision-makers in business, legal, healthcare, and the military use natural language processing systems to obtain insights from vast amounts of data and to make more informed decisions. Recently, natural language generation systems (NLGs) are becoming popular. Examples include question and answer systems and chatbots that are used for advancing public health, and social sensing systems that are used for emergency response and crime prevention. However, there are risks that attackers may be able to manipulate these systems leading to poor outputs and poor decision-making. Robustness to adversaries in deep learning systems has become an active topic in the machine learning and security communities, but the robustness of NLG-based systems is much less studied. This is important to address because there are many differences in the nature of the data and algorithms deep learning and NLG systems employ, as well as the types of tasks they are used for. This project will address these differences through a comprehensive look at the kinds of attacks natural language generation systems are vulnerable to, developing both mathematical models of their vulnerabilities and strategies for reducing them through changes in how NLG systems are designed. This, in turn, will lead to safer, more trustworthy NLG systems and provide a number of educational opportunities for students involved in the research and related classes.The overall goal of the project is to understand NLG systems' attack surface and vulnerabilities and develop novel empirical and theoretical methods for increasing their adversarial robustness. The work will be grounded in two common NLG tasks, summarization and question-answering, and structured around three interconnected aims. The first is developing a framework and proposing novel AI-based optimization methods for examining NLG systems against various attack models. The second is having an in-depth analysis and characterization of vulnerabilities that lead to such attacks. The third is developing a set of defensive methods and tools for enhancing the robustness of NLG systems. This research will be integrated with education and outreach by providing research experiences for women and underrepresented groups, incorporating research results into the course content development and curriculum design, and organizing workshops and competitions to reduce the gap between NLP and cybersecurity programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
商业、法律的、医疗保健和军事领域的决策者使用自然语言处理系统从大量数据中获得见解,并做出更明智的决策。近年来,自然语言生成系统(NLGs)越来越受欢迎。例子包括用于促进公共卫生的问答系统和聊天机器人,以及用于应急响应和预防犯罪的社会传感系统。然而,攻击者可能能够操纵这些系统,从而导致不良的输出和不良的决策。深度学习系统对对手的鲁棒性已经成为机器学习和安全社区的一个活跃话题,但基于NLG的系统的鲁棒性研究得很少。这一点很重要,因为深度学习和NLG系统所采用的数据和算法的性质以及它们所用于的任务类型存在许多差异。该项目将通过全面研究自然语言生成系统易受攻击的类型来解决这些差异,开发其漏洞的数学模型以及通过改变NLG系统设计方式来减少漏洞的策略。这反过来将导致更安全,更值得信赖的NLG系统,并为参与研究和相关课程的学生提供大量的教育机会。该项目的总体目标是了解NLG系统的攻击面和漏洞,并开发新的经验和理论方法,以提高其对抗鲁棒性。这项工作将以两个常见的NLG任务为基础,总结和问答,并围绕三个相互关联的目标进行结构化。第一个是开发一个框架,并提出新的基于AI的优化方法,用于检查NLG系统对各种攻击模型的影响。第二是对导致此类攻击的漏洞进行深入分析和描述。第三是开发一套增强NLG系统鲁棒性的防御方法和工具。这项研究将通过为妇女和代表性不足的群体提供研究经验,将研究结果纳入课程内容的制定和课程设计,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的评估被认为值得支持。影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shirin Nilizadeh其他文献
Twitter Users' Behavioral Response to Toxic Replies
Twitter 用户对恶意回复的行为反应
- DOI:
10.48550/arxiv.2210.13420 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ana Aleksandric;Sayak Roy;Shirin Nilizadeh - 通讯作者:
Shirin Nilizadeh
Peer to Peer Hate: Hate Speech Instigators and Their Targets
点对点仇恨:仇恨言论煽动者及其目标
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Mai Elsherief;Shirin Nilizadeh;Dana Nguyen;Giovanni Vigna;E. Belding - 通讯作者:
E. Belding
Attacking Audio Event Detection Deep Learning Classifiers with White Noise
用白噪声攻击音频事件检测深度学习分类器
- DOI:
10.1145/3453892.3464893 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Rodrigo Augusto dos Santos;Shirin Nilizadeh;A. Kassetty - 通讯作者:
A. Kassetty
Pythia: a privacy aware, peer-to-peer network for social search
Pythia:一个具有隐私意识的点对点社交搜索网络
- DOI:
10.1145/2046556.2046562 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Shirin Nilizadeh;Naveed Alam;Nathaniel Husted;Apu Kapadia - 通讯作者:
Apu Kapadia
Privacy-aware decentralized architectures for socially networked systems
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Shirin Nilizadeh - 通讯作者:
Shirin Nilizadeh
Shirin Nilizadeh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shirin Nilizadeh', 18)}}的其他基金
RAPID: SaTC: CORE: Monitoring Social Media for Devising Improved Safeguards Online
RAPID:SaTC:核心:监控社交媒体以制定改进的在线保障措施
- 批准号:
2309318 - 财政年份:2023
- 资助金额:
$ 56.76万 - 项目类别:
Standard Grant
相似海外基金
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
- 批准号:
2406511 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Standard Grant
Planning: Advancing Discovery on a Sustainable National Research Enterprise
规划:推进可持续国家研究企业的发现
- 批准号:
2412406 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414607 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Green Chemistry: Advancing Equity, Relevance, and Environmental Justice
HSI 实施和评估项目:绿色化学:促进公平、相关性和环境正义
- 批准号:
2345355 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Continuing Grant
AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
- 批准号:
2341110 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Cooperative Agreement
Advancing Child and Youth-led Climate Change Education with Country
与国家一起推进儿童和青少年主导的气候变化教育
- 批准号:
DP240100968 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Discovery Projects
Photonic-Enabled THz Duplex Metasurface: Advancing Communication and Sensing
光子太赫兹双工超表面:推进通信和传感
- 批准号:
24K17324 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Advancing Governance and Resilience for Climate Adaptation through Cultural Heritage (AGREE)
通过文化遗产促进气候适应的治理和抵御能力(同意)
- 批准号:
AH/Z000017/1 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Research Grant
Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
- 批准号:
ES/Z502789/1 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Research Grant