CAREER: Learning and Sharing Transferable Grounded Object Knowledge for Collaborative Robots

职业:学习和分享协作机器人的可转移接地物体知识

基本信息

  • 批准号:
    2239764
  • 负责人:
  • 金额:
    $ 52.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-01 至 2028-02-29
  • 项目状态:
    未结题

项目摘要

Advances in visual and non-visual sensing technologies (e.g., artificial sense of touch) have enabled robots to greatly improve their object manipulation skills. Understanding how objects move, sound, and feel like can improve human-robot collaboration in tasks such as assembling components in manufacturing environments or sorting objects in warehouses and distribution centers. However, learned object knowledge by one robot cannot easily be used by a different robot, with a different body, sensors, and movement actions. In practice, this means that when a new robot is deployed, it has to learn many of its skills and much of its knowledge from scratch. This Faculty Early Career Development (CAREER) project will develop methods for transferring object knowledge across robots so that a newly deployed robot can make sense of the experiences of other robots that have operated in the same or similar environments. This project will facilitate the ability of collaborative robots in homes and workplaces to perceive and reason about the properties of objects. Robots in assistive settings will be better at learning tasks that require the sense of touch, for example, helping a disabled person take off their shoes. The project will also improve robots’ ability to connect language to visual and non-visual perception, for example, helping robots recognize that a particular object can be referred to as “soft”, which is important when humans and robots use language to communicate about objects.Multisensory object knowledge includes recognition models that ground language in multiple sensory modalities (e.g., a classifier that recognizes if an object is “soft” given haptic readings produced when pressing the object) as well as forward models which predict changes in the robot’s environment as a result of its actions. The research objective of this project is to enable multiple heterogeneous robots to learn and share multisensory object knowledge to reduce the amount of interaction data each individual robot needs to collect. This project hypothesizes that two or more robots with different embodiments and sensors can learn to transfer multisensory representations through the use of shared embedding spaces, to which robots map their own experiences and from which they learn using the experiences of other robots. This research will develop the theoretical framework for such transfer along with algorithms and representations that scale to large numbers of robots, sensory modalities, objects, and interaction behaviors. Experimental evaluation will be conducted using existing datasets in the beginning, as well as new datasets with increasing complexity that will be collected with multiple robotic platforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
视觉和非视觉传感技术(例如人工触觉)的进步使机器人能够极大地提高其对象操纵技能。了解物体的移动、声音和手感可以改善人与机器人在制造环境中组装组件或在仓库和配送中心对物体进行分拣等任务中的协作。然而,一个机器人学习的对象知识不容易被具有不同身体、传感器和运动动作的不同机器人使用。在实践中,这意味着当部署一个新的机器人时,它必须从头开始学习许多技能和许多知识。这个学院早期职业发展(CALEAR)项目将开发在机器人之间传递对象知识的方法,以便新部署的机器人能够理解在相同或相似环境中运行的其他机器人的经验。该项目将促进家庭和工作场所中的协作机器人感知和推理对象的属性的能力。在辅助环境中的机器人将更好地学习需要触觉的任务,例如,帮助残疾人脱鞋。该项目还将提高机器人将语言与视觉和非视觉感知联系起来的能力,例如,帮助机器人识别特定对象可以被称为“软”,这在人类和机器人使用语言交流对象时非常重要。多感知对象知识包括以多种感官模式为语言奠定基础的识别模型(例如,根据按下对象时产生的触觉读数识别对象是否“软”的分类器),以及预测机器人环境因其动作而发生变化的向前模型。该项目的研究目标是使多个异质机器人能够学习和共享多感官对象知识,以减少每个机器人需要收集的交互数据量。该项目假设,具有不同实施例和传感器的两个或多个机器人可以通过使用共享嵌入空间来学习传递多感觉表征,机器人将自己的经验映射到该空间,并使用其他机器人的经验从中学习。这项研究将开发这种转移的理论框架,以及可扩展到大量机器人、感觉模式、对象和交互行为的算法和表示法。实验评估将在一开始使用现有的数据集,以及将通过多个机器人平台收集的日益复杂的新数据集。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jivko Sinapov其他文献

Dialogue with Robots: Proposals for Broadening Participation and Research in the SLIVAR Community
与机器人对话:扩大 SLIVAR 社区参与和研究的提案
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Casey Kennington;Malihe Alikhani;Heather Pon;Katherine Atwell;Yonatan Bisk;Daniel Fried;Felix Gervits;Zhao Han;Mert Inan;Michael Johnston;Raj Korpan;Diane Litman;M. Marge;Cynthia Matuszek;Ross Mead;Shiwali Mohan;Raymond Mooney;Natalie Parde;Jivko Sinapov;Angela Stewart;Matthew Stone;Stefanie Tellex;Tom Williams
  • 通讯作者:
    Tom Williams
NovelGym: A Flexible Ecosystem for Hybrid Planning and Learning Agents Designed for Open Worlds
NovelGym:专为开放世界设计的混合规划和学习代理的灵活生态系统
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shivam Goel;Yichen Wei;Panagiotis Lymperopoulos;matthias. scheutz;Jivko Sinapov
  • 通讯作者:
    Jivko Sinapov
Using ConceptGrid as an easy authoring technique to check natural language responses
使用 ConceptGrid 作为一种简单的创作技术来检查自然语言响应
  • DOI:
    10.1504/ijlt.2015.069449
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephen Blessing;Shrenik Devasani;Stephen B Gilbert;Jivko Sinapov
  • 通讯作者:
    Jivko Sinapov
Dynamic Path Visualization for Human-Robot Collaboration
人机协作的动态路径可视化
A Framework for Multisensory Foresight for Embodied Agents
具身主体的多感官预见框架

Jivko Sinapov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing and sharing best practice to support victims of sexual violence with learning disabilities and/or autism
制定和分享最佳实践,以支持患有学习障碍和/或自闭症的性暴力受害者
  • 批准号:
    ES/X003353/1
  • 财政年份:
    2023
  • 资助金额:
    $ 52.27万
  • 项目类别:
    Research Grant
Development and Effectiveness Verification of an Information Sharing System for Patient Safety Incidents to Promote Organizational Learning in Homecare Nursing Agencies
患者安全事件信息共享系统的开发和有效性验证,以促进家庭护理机构的组织学习
  • 批准号:
    23K16524
  • 财政年份:
    2023
  • 资助金额:
    $ 52.27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERI: An Adaptive Incremental Deep Learning Architecture for Real-Time Inference of RF Signals in Dynamic Spectrum Sharing Environments
ERI:一种自适应增量深度学习架构,用于动态频谱共享环境中射频信号的实时推理
  • 批准号:
    2138898
  • 财政年份:
    2022
  • 资助金额:
    $ 52.27万
  • 项目类别:
    Standard Grant
Developing Federated Learning Strategies for Disease Surveillance Using Cross-Jurisdiction Electronic Medical Records without Data Sharing: With Applications to Acute Myocardial Infarction, Hypertension, and Sepsis Detection
使用跨辖区电子病历(无需数据共享)开发疾病监测联合学习策略:在急性心肌梗塞、高血压和脓毒症检测中的应用
  • 批准号:
    468573
  • 财政年份:
    2022
  • 资助金额:
    $ 52.27万
  • 项目类别:
    Operating Grants
Developing distributed learning algorithms for convolutional neural networks: a novel method for training deep learning models without sharing and collecting data
开发卷积神经网络的分布式学习算法:一种无需共享和收集数据即可训练深度学习模型的新方法
  • 批准号:
    546140-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 52.27万
  • 项目类别:
    Postdoctoral Fellowships
Accelerating Reinforcement Learning By Sharing Knowledge Between Tasks
通过在任务之间共享知识来加速强化学习
  • 批准号:
    569430-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 52.27万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Housing and community-leadership: sharing learning from reorganising the neighbourhood
住房和社区领导:分享重组社区的经验教训
  • 批准号:
    ES/X00709X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 52.27万
  • 项目类别:
    Fellowship
Developing Federated Learning Strategies for Disease Surveillance Using Cross-Jurisdiction Electronic Medical Records without Data Sharing: With Applications to Sepsis Detection
在没有数据共享的情况下使用跨辖区电子病历开发疾病监测联合学习策略:应用于脓毒症检测
  • 批准号:
    464488
  • 财政年份:
    2022
  • 资助金额:
    $ 52.27万
  • 项目类别:
    Operating Grants
CAREER: Distributionally Robust Learning, Control, and Benefits Analysis of Information Sharing for Connected and Autonomous Vehicles
职业:互联和自动驾驶车辆信息共享的分布式鲁棒学习、控制和效益分析
  • 批准号:
    2047354
  • 财政年份:
    2021
  • 资助金额:
    $ 52.27万
  • 项目类别:
    Continuing Grant
Developing distributed learning algorithms for convolutional neural networks: a novel method for training deep learning models without sharing and collecting data
开发卷积神经网络的分布式学习算法:一种无需共享和收集数据即可训练深度学习模型的新方法
  • 批准号:
    546140-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 52.27万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了