CAREER: Social Response-Powered Misinformation Detection, Robustness, and Correction
职业:社会响应驱动的错误信息检测、稳健性和纠正
基本信息
- 批准号:2239879
- 负责人:
- 金额:$ 60.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will invent methods to detect and correct misinformation on online platforms. Online misinformation poses an alarming threat to public health, democracy, science, and society. Addressing misinformation at scale remains a pressing challenge as current solutions rely on the limited resources of professional fact-checkers or moderators, which neither scales to newly emerging information issues nor directly addresses how to respond to misinformation in situ. This project will address these challenges through developing robust detection models that leverage user-generated responses to social media posts to identify potentially non-credible information. The team will also design a counter-response generation tool that can help everyday users effectively respond to misinformation, leveraging the models developed along with existing fact-checking resources and best practices in communication to suggest possible responses to incorrect posts that will help readers assess them. Together, the proposed work will boost information literacy in society and reduce the number of people exposed to misinformation. The team will also develop interdisciplinary coursework and research opportunities that will broaden both students’ toolkits for addressing misinformation in social media systems and the range of students who engage in it.This project will advance scientific knowledge in misinformation, graph neural networks, adversarial learning, and social network analysis. The general approach is to leverage the social responses that ordinary users make on online posts, such as supporting, questioning, disbelieving, or countering claims, to robustly detect misinformation and suggest corrective responses. Around detection, the project will develop novel signed dynamic graph neural network models and network augmentation methods to address network sparsity issues. Around robustness, the project will create detection models that are robust to adversarial manipulation, by better modeling adversarial attacks carried out by groups of attackers, then creating defenses that optimize against fake response injections into social media comments. Around correction, the project seeks to empower social media users to correct misinformation by developing text generation methods to suggest effective counter-responses to posts estimated to contain information; these methods will be trained on data collected from professional fact-checking organizations and assessed in a series of studies. The project will also result in new models, datasets, benchmarks, and tools around misinformation that will promote future research on these topics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将发明检测和纠正在线平台上错误信息的方法。网络错误信息对公共卫生、民主、科学和社会构成了令人担忧的威胁。大规模处理错误信息仍然是一项紧迫的挑战,因为目前的解决方案依赖于专业事实检查员或版主的有限资源,这些资源既不能扩展到新出现的信息问题,也不能直接解决如何应对现场的错误信息。该项目将通过开发强大的检测模型来应对这些挑战,该模型利用用户对社交媒体帖子的回复来识别潜在的不可信信息。该团队还将设计一个反回应生成工具,帮助日常用户有效地回应错误信息,利用开发的模型以及现有的事实核查资源和沟通中的最佳实践,建议对错误帖子的可能回应,帮助读者评估这些帖子。总之,拟议的工作将提高社会的信息素养,减少接触错误信息的人数。该团队还将开发跨学科的课程和研究机会,这将扩大学生解决社交媒体系统中错误信息的工具包,并扩大参与其中的学生的范围。该项目将推进错误信息、图神经网络、对抗性学习和社会网络分析方面的科学知识。一般的方法是利用普通用户对在线帖子的社会反应,如支持、质疑、不相信或反对主张,以强有力地发现错误信息并提出纠正措施。围绕检测,该项目将开发新的签名动态图神经网络模型和网络增强方法来解决网络稀疏性问题。围绕健壮性,该项目将创建对对抗性操作具有健壮性的检测模型,通过更好地模拟攻击者群体进行的对抗性攻击,然后创建防御措施,优化对社交媒体评论的虚假响应注入。在纠正方面,该项目旨在通过开发文本生成方法,对估计含有信息的帖子提出有效的回应建议,从而增强社交媒体用户纠正错误信息的能力;这些方法将根据从专业事实核查组织收集的数据进行培训,并在一系列研究中进行评估。该项目还将产生针对错误信息的新模型、数据集、基准和工具,这将促进这些主题的未来研究。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Srijan Kumar其他文献
Characterization and Detection of Malicious Behavior on the Web
- DOI:
10.13016/m2857h - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Srijan Kumar - 通讯作者:
Srijan Kumar
Predicting dominance in multi-person videos
预测多人视频中的主导地位
- DOI:
10.24963/ijcai.2019/645 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Chongyang Bai;Maksim Bolonkin;Srijan Kumar;J. Leskovec;J. Burgoon;Norah E. Dunbar;V. S. Subrahmanian - 通讯作者:
V. S. Subrahmanian
Racism is a Virus: Anti-Asian Hate and Counterhate in Social Media during the COVID-19 Crisis
种族主义是一种病毒:COVID-19 危机期间社交媒体上的反亚裔仇恨和反仇恨
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Caleb Ziems;Bing He;Sandeep Soni;Srijan Kumar - 通讯作者:
Srijan Kumar
Predicting the Visual Focus of Attention in Multi-Person Discussion Videos
预测多人讨论视频中的视觉注意力焦点
- DOI:
10.24963/ijcai.2019/626 - 发表时间:
2019 - 期刊:
- 影响因子:2.3
- 作者:
Chongyang Bai;Srijan Kumar;J. Leskovec;Miriam J. Metzger;J. Nunamaker;V. S. Subrahmanian - 通讯作者:
V. S. Subrahmanian
Metric Logic Program Explanations for Complex Separator Functions
复杂分隔符功能的度量逻辑程序说明
- DOI:
10.1007/978-3-319-45856-4_14 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Srijan Kumar;Edoardo Serra;Francesca Spezzano;V. S. Subrahmanian - 通讯作者:
V. S. Subrahmanian
Srijan Kumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Srijan Kumar', 18)}}的其他基金
FW-HTF-P: Collaborative Research: Artificial Intelligence-Supported Development of Future Organizational Leaders
FW-HTF-P:协作研究:人工智能支持未来组织领导者的发展
- 批准号:
2128873 - 财政年份:2021
- 资助金额:
$ 60.78万 - 项目类别:
Standard Grant
相似国自然基金
小型类人猿合唱节奏的功能假说——宣
示社会关系(Social bond
advertising) ——验证研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
Behavioral Insights on Cooperation in Social Dilemmas
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国优秀青年学者研究基金项目
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
多语言环境下Social Tagging的内涵机理与应用框架研究-基于比较的视角
- 批准号:71103203
- 批准年份:2011
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Identifying adolescent social media response in real-time: Risk and protective factors for Asian American mental health
实时识别青少年社交媒体反应:亚裔美国人心理健康的风险和保护因素
- 批准号:
10814674 - 财政年份:2023
- 资助金额:
$ 60.78万 - 项目类别:
Moving beyond the Pain-Suicidality Link: An Investigation of Fluctuations in Social Threat and Neural Response to Social Threat in Momentary Pain and Proximal Risk for Suicidal Ideation in Adolescence
超越疼痛与自杀的联系:对青春期短暂疼痛和自杀意念的近端风险中社会威胁的波动和对社会威胁的神经反应的调查
- 批准号:
10633908 - 财政年份:2023
- 资助金额:
$ 60.78万 - 项目类别:
Rapid Response to Incident HIV Infection through Social Network Strategies and Molecular Epidemiology to Inform Partner Services
通过社交网络策略和分子流行病学快速响应艾滋病毒感染事件,为合作伙伴服务提供信息
- 批准号:
10460005 - 财政年份:2022
- 资助金额:
$ 60.78万 - 项目类别:
Impacts of COVID-19 and its prevention measures on mental health and social relations in Canada, Australia and Colombia: how to optimize policy strategy to improve pandemic response
COVID-19 及其预防措施对加拿大、澳大利亚和哥伦比亚心理健康和社会关系的影响:如何优化政策策略以改善大流行应对
- 批准号:
486007 - 财政年份:2022
- 资助金额:
$ 60.78万 - 项目类别:
Studentship Programs
Prefrontal-Accumbens Neurocircuits Mediating Response to Social Stress
前额叶伏隔神经回路调节对社会压力的反应
- 批准号:
10624234 - 财政年份:2022
- 资助金额:
$ 60.78万 - 项目类别:
Identification of post-synaptic proteins involved in a social behavioural response to the environment.
识别参与对环境的社会行为反应的突触后蛋白。
- 批准号:
547927-2020 - 财政年份:2022
- 资助金额:
$ 60.78万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Developing insertable cardiac monitors to assess social and environmental effects on the autonomic stress response in a nonhuman primate model of aging
开发可插入心脏监测仪,以评估社会和环境对非人类灵长类衰老模型中自主应激反应的影响
- 批准号:
10512468 - 财政年份:2022
- 资助金额:
$ 60.78万 - 项目类别:
Developing insertable cardiac monitors to assess social and environmental effects on the autonomic stress response in a nonhuman primate model of aging
开发可插入心脏监测仪,以评估社会和环境对非人类灵长类衰老模型中自主应激反应的影响
- 批准号:
10683337 - 财政年份:2022
- 资助金额:
$ 60.78万 - 项目类别:
Building Social Media Communications Capacity for Public Health Emergency Response and Preparedness in British Columbia
建设不列颠哥伦比亚省公共卫生应急响应和准备的社交媒体传播能力
- 批准号:
460702 - 财政年份:2022
- 资助金额:
$ 60.78万 - 项目类别:
Miscellaneous Programs
Allostatic load, Response to discrimination stress, Discrimination Exposure frequency, and social Network structure and function (ARDEN)
动态负荷、对歧视压力的反应、歧视暴露频率以及社交网络结构和功能 (ARDEN)
- 批准号:
10374350 - 财政年份:2022
- 资助金额:
$ 60.78万 - 项目类别:














{{item.name}}会员




