CAREER: Uncovering transcriptional regulatory mechanisms in plant thermomorphogenesis

职业:揭示植物热形态发生的转录调控机制

基本信息

  • 批准号:
    2239963
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-15 至 2028-02-29
  • 项目状态:
    未结题

项目摘要

In the context of global climate change, plants face a more fluctuating temperature environment. It is well known that extreme temperatures such as heatwaves have detrimental impacts on crop production and biodiversity. However, even smaller increases in ambient temperatures would dramatically change the growth and development of various plant species. These temperature-induced changes in the growth speed of organs (e.g., stem and roots), biomass, flowering time, the rate of photosynthesis, and the efficiency of water usage, significant impact crop yield and fitness. However, the precise mechanisms by which plants sense and respond to moderately increased, nonstressful (warm) temperatures are still unclear. The long-term goal of the proposed project is to elucidate the regulatory mechanisms by which warm temperatures trigger the expression of critical genes whose products contribute to the morphological and architectural changes in land plants. To achieve this goal, innovative technologies have been developed or adapted to examine the spatiotemporal functions and structure-function relationships of critical transcriptional regulators and their co-factors in thermosensory growth. Understanding these mechanisms is crucial for us to design and breed climate-resilient crops, potentially reducing the adverse effects of global warming on crop productivity and food security. The success of the project will also help train next-generation scientists from high school to graduate levels in performing cutting-edge research. Different from the stress responses triggered by extreme temperatures, plant responses to nonstressful ambient temperature fluctuations require unique machinery. Among the discovered components, thermosensory transcription factors (TTFs) play primary roles in warm-temperature-induced hypocotyl (embryonic stem) growth, a process termed thermomorphogenesis. Among the identified TTF families, PIF4 plays a pivotal role in modulating thermomorphogenetic growth. Warm temperatures activate PIF4 transcription through a yet unknown mechanism, and accumulated PIF4 promotes hypocotyl growth by activating key genes involved in the biosynthesis of and response to the growth hormone auxin. The PI discovered HEMERA (HMR) as a coactivator of PIF4 in activating the thermoresponsive gene expression. Although HMR is required for PIF4 activity and protein stability at warm temperatures, how these regulations are achieved remains elusive. Through forward and reverse genetic approaches and bioinformatic analyses, the PI’s group has identified multiple factors that may regulate PIF4 expression, activity, and protein stability upon temperature elevations. The proposed research will uncover PIF4-mediated thermomorphogenetic mechanisms and transcriptional regulatory networks formed by PIF4 and other TTF families. The integrated educational plan will improve STEM preparedness at the University of Mississippi and across the state of Mississippi and includes efforts to 1) enhance undergraduate and graduate education in plant molecular genetics and physiology at UM; 2) develop a plant phenomics and molecular genetics summer research program for underrepresented minority students at UM and HBCUs; 3) develop a plant molecular biology summer research program for high school and community college students with disadvantaged backgrounds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在全球气候变化的背景下,植物面临着更加波动的温度环境。众所周知,热浪等极端温度对作物生产和生物多样性有不利影响。然而,即使是环境温度的小幅升高也会极大地改变各种植物物种的生长和发育。这些温度引起的器官(如茎和根)的生长速度、生物量、开花时间、光合作用速率和水分利用效率的变化,对作物产量和适合度产生重大影响。然而,植物感知和响应适度增加的、无压力的(温暖的)温度的确切机制仍然不清楚。该项目的长期目标是阐明高温触发关键基因表达的调控机制,这些基因的产物有助于陆地植物的形态和结构变化。为了实现这一目标,已经开发或采用了创新技术来研究热感觉生长中关键转录调节因子及其辅助因子的时空功能和结构-功能关系。了解这些机制对于我们设计和培育适应气候变化的作物至关重要,这可能会减少全球变暖对作物生产力和粮食安全的不利影响。该项目的成功将有助于培养从高中到研究生的下一代科学家从事尖端研究。与极端温度引发的应激反应不同,植物对非应激环境温度波动的反应需要独特的机制。在发现的成分中,热感觉转录因子(TTFs)在温暖温度诱导的下胚轴(胚胎干)生长中起主要作用,这一过程被称为热形态发生。在已确定的TTF家族中,PIF4在调节热形态发生生长中起关键作用。温暖的温度通过未知的机制激活PIF4的转录,积累的PIF4通过激活参与生长激素生长素生物合成和应答的关键基因来促进下胚轴的生长。PI发现HEMERA (HMR)作为PIF4的共激活因子激活热反应基因表达。尽管HMR是PIF4在温暖温度下活性和蛋白质稳定性所必需的,但这些调控是如何实现的仍然是难以捉摸的。通过正向和反向遗传方法以及生物信息学分析,PI的研究小组已经确定了多种因素,可以调节温度升高时PIF4的表达、活性和蛋白质稳定性。拟议的研究将揭示PIF4介导的热形态发生机制和PIF4和其他TTF家族形成的转录调控网络。综合教育计划将改善密西西比大学和整个密西西比州的STEM准备工作,包括努力1)加强UM植物分子遗传学和生理学的本科和研究生教育;2)为UM和HBCUs的少数族裔学生开展植物表型组学和分子遗传学暑期研究项目;3)为高中和社区大学弱势群体学生开展植物分子生物学暑期研究项目。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YONGJIAN QIU其他文献

YONGJIAN QIU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YONGJIAN QIU', 18)}}的其他基金

EAGER: Investigating plant thermomorphogenesis using innovative miniature devices
EAGER:使用创新的微型设备研究植物热形态发生
  • 批准号:
    2200200
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Uncovering the role of splicing factors in transcriptional regulation
职业:揭示剪接因子在转录调控中的作用
  • 批准号:
    2339464
  • 财政年份:
    2024
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Uncovering the Origin and Mechanisms of Ultradian Rhythms in the Drosophila Brain
揭示果蝇大脑超电节律的起源和机制
  • 批准号:
    10654092
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
Uncovering single-cell transcriptional dynamics in somitogenesis in live zebrafish embryos
揭示活体斑马鱼胚胎体节发生中的单细胞转录动力学
  • 批准号:
    10742431
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
Uncovering cell-intrinsic restrictions to CRISPR-Cas9 gene editing
揭示 CRISPR-Cas9 基因编辑的细胞内在限制
  • 批准号:
    10449495
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
Uncovering the function of histone variant H2BE in neurons
揭示组蛋白变体 H2BE 在神经元中的功能
  • 批准号:
    10610728
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
Uncovering the genetically-driven differential susceptibility to chronic obstructive pulmonary disease and pulmonary fibrosis
揭示遗传驱动的对慢性阻塞性肺病和肺纤维化的易感性差异
  • 批准号:
    10584895
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
Uncovering cell-intrinsic restrictions to CRISPR-Cas9 gene editing
揭示 CRISPR-Cas9 基因编辑的细胞内在限制
  • 批准号:
    10596613
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
Uncovering the function of histone variant H2BE in neurons
揭示组蛋白变体 H2BE 在神经元中的功能
  • 批准号:
    10462825
  • 财政年份:
    2022
  • 资助金额:
    $ 100万
  • 项目类别:
Rarely Common: Uncovering the dominant role of rare variants in the genetic architecture of complex human traits.
罕见:揭示罕见变异在复杂人类特征的遗传结构中的主导作用。
  • 批准号:
    10531261
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
Uncovering Epigenetic and Transcriptional Drivers of Neuroendocrine Plasticity at Single-Cell Level in Patients with Small Cell Lung Cancer Transformation
在单细胞水平上揭示小细胞肺癌转化患者神经内分泌可塑性的表观遗传和转录驱动因素
  • 批准号:
    10540383
  • 财政年份:
    2021
  • 资助金额:
    $ 100万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了