Uncovering cell-intrinsic restrictions to CRISPR-Cas9 gene editing
揭示 CRISPR-Cas9 基因编辑的细胞内在限制
基本信息
- 批准号:10449495
- 负责人:
- 金额:$ 9.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAreaAwardBiological ModelsBiological ProcessBiologyBone MarrowCOVID-19CRISPR/Cas technologyCell Differentiation processCell LineageCell SurvivalCell modelCell physiologyCellsCellular biologyClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesComplexDNADNA DamageDNA RepairDNA SequenceDevelopmentDiseaseDown-RegulationEngraftmentEnvironmentFoundationsGene Expression ProfileGenesGeneticGenetic DeterminismGenomicsGoalsHematopoieticHematopoietic stem cellsHomeostasisHumanIn SituInfusion proceduresInstitutesInternationalIntrinsic factorKnowledgeLinkLongevityMaintenanceMammalian CellMediatingMentorsModelingModificationMusOutcomePhasePhysiologicalPredispositionPrimary Cell CulturesRegulator GenesResearchRibonucleoproteinsRunningSan FranciscoSiteSupervisionT cell differentiationT-LymphocyteTP53 geneTechnologyTestingTissuesTrainingTreatment EfficacyUndifferentiatedVirus-like particleWorkadult stem cellbase editingcell typecomparative effectivenessdelivery vehicleexperienceexperimental studygenetic manipulationgenome editinggenome-wideimprovedimproved outcomein vivoinnovationinsightmultipotent cellnew technologyresponsesingle-cell RNA sequencingsomatic cell gene editingstem cell biologystem cell genesstem cell homeostasisstem cellssymposiumtargeted treatmenttherapeutic genetherapeutic genome editingtranscriptional reprogrammingtranscriptometranslational potential
项目摘要
Project Summary
Multipotent, tissue-specific stem cells (“adult stem cells”) are major targets for therapeutic gene editing
because of their longevity and capacity to differentiate into specialized cell types. However, the site-directed
genetic modification of adult stem cells is inefficient in vivo. Further, no robust characterization of genome
editing efficiency across a complete cellular lineage has been performed to understand cell-intrinsic restrictions
to gene editing in undifferentiated and differentiated cell types. Much of my postdoctoral work has focused on
developing virus-like particles as a delivery vehicle for pre-assembled CRISPR Cas9-sgRNA ribonucleoprotein
(RNP) complexes for editing of primary human cells ex vivo. The primary aims of this proposal are therefore: 1)
to characterize the the baseline relative gene editing and base editing efficiencies of cell types derived from a
complete cell lineage (hematopoietic cells) containing multipotent and differentiated cell types, 2) leverage
CRISPR-Cas screens in adult stem cells (hematopoietic stem cells) and terminally differentiated cells (T cells)
to identify genetic factors that modulate gene editing efficiency, 3) couple CRISPR-i and Perturb-seq to
uncover genetic factors responsible for maintaining adult stem cell homeostasis following gene editing and 4)
utilize virus-like particles packaging Cas9 RNP complexes to achieve genome editing of adult stem cells in
vivo. The proposed research will provide considerable insight into the basic biology underpinning gene editing
determinants in undifferentiated and differentiated primary cells, and the feasibility of using Cas9 RNPs to
mediate therapeutic gene editing in multipotent cells in vivo, using hematopoietic stem cells as a model cell
type. Significant findings relevant to the fields of stem cell biology, DNA repair biology, therapeutic genome
editing are expected. Areas of additional scientific training that will enable successful completion of this
proposal are knowledge of primary cell culture, experience conducting genome-wide CRISPR-Cas screens
and single-cell RNAseq analysis. The mentored phase of the award will be supervised by Dr. Jennifer Doudna,
a world-leader in genome editing technology. Dr. Doudna, and all other collaborators on this project are located
at UC Berkeley or in the greater San Francisco Bay Area scientific community. During the mentored phase of
this project I will continue scientific professional development activities to improve as a scientific leader and
gain a thorough grounding in topics essential for running my own independent research group. I will also
continue presenting my research at national and international conferences (likely remotely while COVID-19
precautions are in effect). When combined with the excellent research environment at UC Berkeley and the
Innovative Genomics Institute, I have an outstanding opportunity to complete my foundational training as I
begin my transition to independence.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer R Hamilton其他文献
Neuronal DNA repair reveals strategies to influence CRISPR editing outcomes
神经元 DNA 修复揭示了影响 CRISPR 编辑结果的策略
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Gokul N. Ramadoss;Samali J Namaganda;Jennifer R Hamilton;Rohit Sharma;Karena G Chow;Bria L Macklin;Mengyuan Sun;Jia;Christof Fellmann;Hannah L. Watry;Julianne Jin;Barbara S Perez;Cindy R Sandoval Espinoza;Madeline Matia;Serena H Lu;Luke M. Judge;A. Nussenzweig;Britt Adamson;Niren Murthy;Jennifer A. Doudna;Martin Kampmann;Bruce R. Conklin - 通讯作者:
Bruce R. Conklin
Jennifer R Hamilton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer R Hamilton', 18)}}的其他基金
Uncovering cell-intrinsic restrictions to CRISPR-Cas9 gene editing
揭示 CRISPR-Cas9 基因编辑的细胞内在限制
- 批准号:
10596613 - 财政年份:2022
- 资助金额:
$ 9.57万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 9.57万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 9.57万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 9.57万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 9.57万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 9.57万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 9.57万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 9.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 9.57万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Tracking Long-Term Changes in Lake Area across the Arctic
博士后奖学金:OPP-PRF:追踪北极地区湖泊面积的长期变化
- 批准号:
2317873 - 财政年份:2024
- 资助金额:
$ 9.57万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 9.57万 - 项目类别:
Standard Grant














{{item.name}}会员




