CAREER: Safety Assurances for Perception-Enabled Robotic Systems
职业:感知机器人系统的安全保证
基本信息
- 批准号:2240163
- 负责人:
- 金额:$ 55.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
From self-driving vehicles to autonomous drones, machine learning-driven perception components constitute a core part of modern autonomous systems and robots. Autonomous system capabilities are primarily enabled by the ability of modern machine learning methods to elegantly process rich perceptual inputs and outputs so as to produce useful information for control, ultimately enabling robots to make intelligent decisions in novel situations based on what they see. However, perception failures can cascade to catastrophic robot failures and compromise human safety, as exemplified by recent self-driving car accidents. Therefore, ensuring safe robot operation under learning-driven, perception-based controllers is paramount to enable their adoption in high-integrity and safety-critical applications. This project will establish a foundational framework for providing continual safety assurances for closed-loop systems under a perception-based controller, wherein assurances are provided provisionally at training time, and continually monitored, updated, and improved during operation-time (or runtime). In particular, this project will: (a) develop novel techniques for learning robust-by-construction perception policies; (b) construct safety monitors for perception policies to ensure their safe operation during runtime; and (c) develop a principled approach to mine closed-loop perception failures at scale and use them to improve robot safety over time. These results will be grounded through a thorough evaluation on a heterogeneous physical robotic testbed, as well as photorealistic simulators, with a focus on autonomous inspection and autonomous aircraft landing tasks. The ability to develop safe perception-driven systems will have a direct, positive impact on a broad range of robotics applications where safety and reliability are of high importance, such as surveillance of critical infrastructure, service or delivery robots, and autonomous cars. This impact will be enhanced through: (a) an integrated education and outreach plan designed to facilitate robot safety discussions and educate faculty and students at all levels: K-12, undergraduate and graduate students, and the broader robotics research community; (b) close collaborations with industry and regulatory bodies; and (c) focusing on disseminating codebases and implementations, and open-sourcing curriculum materials for a new robotics course including hands-on labs with wheeled robots.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从自动驾驶汽车到自动驾驶无人机,机器学习驱动的感知组件构成了现代自主系统和机器人的核心部分。自主系统的能力主要是通过现代机器学习方法来优雅地处理丰富的感知输入和输出,从而产生有用的控制信息,最终使机器人能够在新的情况下根据他们所看到的做出智能决策。然而,感知故障可能会导致灾难性的机器人故障并危及人类安全,最近的自动驾驶汽车事故就是一个例子。因此,确保机器人在学习驱动的、基于感知的控制器下安全运行,对于使其在高完整性和安全关键型应用中得以采用至关重要。该项目将建立一个基础框架,为基于感知的控制器下的闭环系统提供持续的安全保证,其中保证在训练时临时提供,并在操作时间(或运行时间)期间持续监控,更新和改进。特别是,该项目将:(a)开发新的技术,用于学习鲁棒的构造感知策略;(B)构建感知策略的安全监控器,以确保其在运行时的安全操作;(c)开发一种原则性的方法来大规模挖掘闭环感知故障,并使用它们来提高机器人的安全性。这些结果将通过对异构物理机器人测试平台以及真实感模拟器的全面评估来实现,重点是自主检查和自主飞机着陆任务。开发安全感知驱动系统的能力将对安全性和可靠性非常重要的广泛机器人应用产生直接的积极影响,例如关键基础设施的监控,服务或交付机器人以及自动汽车。这一影响将通过以下方式得到加强:(a)旨在促进机器人安全讨论并教育各级教师和学生的综合教育和推广计划:K-12,本科生和研究生以及更广泛的机器人研究社区;(B)与行业和监管机构密切合作;以及(c)侧重于传播代码库和执行情况,以及一个新的机器人课程的开源课程材料,包括手-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Somil Bansal其他文献
SAFE-GIL: SAFEty Guided Imitation Learning
SAFE-GIL:安全引导的模仿学习
- DOI:
10.48550/arxiv.2404.05249 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yusuf Umut Ciftci;Zeyuan Feng;Somil Bansal - 通讯作者:
Somil Bansal
Reachability-Based Safety Guarantees using Efficient Initializations
使用高效初始化的基于可达性的安全保证
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Sylvia L. Herbert;Shromona Ghosh;Somil Bansal;C. Tomlin - 通讯作者:
C. Tomlin
On Safety and Liveness Filtering Using Hamilton-Jacobi Reachability Analysis
使用 Hamilton-Jacobi 可达性分析进行安全性和活性过滤
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Javier Borquez;Kaustav Chakraborty;Hao Wang;Somil Bansal - 通讯作者:
Somil Bansal
Plug-and-Play Model Predictive Control for Load Shaping and Voltage Control in Smart Grids
智能电网中负载整形和电压控制的即插即用模型预测控制
- DOI:
10.1109/tsg.2017.2655461 - 发表时间:
2016 - 期刊:
- 影响因子:9.6
- 作者:
Caroline Le Floch;Somil Bansal;C. Tomlin;S. Moura;M. Zeilinger - 通讯作者:
M. Zeilinger
Actual SystemCurrent Linear Dynamics Controller Cost Function Bayesian Optimization Cost Evaluator Output Cost New Linear Dynamics Optimal Control Scheme
实际系统当前线性动态控制器成本函数贝叶斯优化成本评估器输出成本新线性动态最优控制方案
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Somil Bansal;R. Calandra;Ted Xiao;S. Levine;C. Tomlin - 通讯作者:
C. Tomlin
Somil Bansal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Footwear Innovation to Improve Safety for Female Turf Sport Players (“FemFITS”)
鞋类创新可提高女性草地运动运动员的安全性 (“FemFITS”)
- 批准号:
10098494 - 财政年份:2024
- 资助金额:
$ 55.18万 - 项目类别:
Collaborative R&D
CAREER: A Universal Framework for Safety-Aware Data-Driven Control and Estimation
职业:安全意识数据驱动控制和估计的通用框架
- 批准号:
2340089 - 财政年份:2024
- 资助金额:
$ 55.18万 - 项目类别:
Standard Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
- 批准号:
2340171 - 财政年份:2024
- 资助金额:
$ 55.18万 - 项目类别:
Continuing Grant
Phase Ib/II study of safety and efficacy of EZH2 inhibitor, tazemetostat, and PD-1 blockade for treatment of advanced non-small cell lung cancer
EZH2 抑制剂、他泽美司他和 PD-1 阻断治疗晚期非小细胞肺癌的安全性和有效性的 Ib/II 期研究
- 批准号:
10481965 - 财政年份:2024
- 资助金额:
$ 55.18万 - 项目类别:
An Integrated Model of Contextual Safety, Social Safety, and Social Vigilance as Psychosocial Contributors to Cardiovascular Disease
情境安全、社会安全和社会警惕作为心血管疾病社会心理因素的综合模型
- 批准号:
10749134 - 财政年份:2024
- 资助金额:
$ 55.18万 - 项目类别:
SBIR Phase I: Optimizing Safety and Fuel Efficiency in Autonomous Rendezvous and Proximity Operations (RPO) of Uncooperative Objects
SBIR 第一阶段:优化不合作物体自主交会和邻近操作 (RPO) 的安全性和燃油效率
- 批准号:
2311379 - 财政年份:2024
- 资助金额:
$ 55.18万 - 项目类别:
Standard Grant
Safety-Ⅱを指向したICU看護師のプロアクティブ・ワークロードマネジメント
面向Safety-II的ICU护士主动工作量管理
- 批准号:
23K22999 - 财政年份:2024
- 资助金额:
$ 55.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Catalysing scientific innovation into food safety action
促进科学创新转化为食品安全行动
- 批准号:
10106966 - 财政年份:2024
- 资助金额:
$ 55.18万 - 项目类别:
EU-Funded
THERMOS:Thermal Safety Margins of Earth's Tropical Forests
膳魔师:地球热带森林的热安全裕度
- 批准号:
NE/Y00163X/1 - 财政年份:2024
- 资助金额:
$ 55.18万 - 项目类别:
Research Grant
ELOQUENCE - Multilingual and Cross-cultural interactions for context-aware, and bias-controlled dialogue systems for safety-critical applications
ELOQUENCE - 用于安全关键应用的上下文感知和偏差控制对话系统的多语言和跨文化交互
- 批准号:
10092660 - 财政年份:2024
- 资助金额:
$ 55.18万 - 项目类别:
EU-Funded