CAREER: Advancing Shape Learning for Biosciences
职业:推进生物科学的形状学习
基本信息
- 批准号:2240158
- 负责人:
- 金额:$ 49.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Understanding the healthy and pathological shapes of biological structures (proteins, cells, organs) directly from image data is critical to understand their roles in living organisms. The impact for human health and society range from our understanding of cancers to the diagnosis of neurodegenerative diseases. This CAREER proposal will evaluate and develop reliable shape analysis methods that can harness the recent bio-imaging data explosion, advance our understanding of the fundamental rules of life, and enable breakthroughs in data-driven biomedicine. Tightly integrated with the research activities, the education and outreach objective is to engage diverse audiences in shape analysis and bioscience through novel art-science performances for high-school students, pioneering courses on geometric machine learning for shape analysis, training of graduate students, and free community outreach lectures for the wide audience.Despite impressive advances in the field of shape analysis, its deployment to biosciences is prohibited by computational and statistical hurdles. This yields challenges related to the interpretation of results, where inconsistent analyses bear the danger of driving scientific conclusions in the wrong direction —a serious drawback for a discipline that ultimately researches human health. In mathematics, (biological) shapes can be represented as shapes of key points, shapes of curves, or shapes of surfaces. The associated shape data spaces present common abstract geometric structures of non-Euclidean manifolds. This project will utilize these commonalities to establish a consistent numerical framework to systematically and exhaustively evaluate the possible inconsistencies of machine learning algorithms on shape spaces. In particular, it will provide a deep dive into the geodesic and polynomial regression models on non-Euclidean manifolds. The findings will be leveraged into a pilot study that will reliably extract biologically relevant parameters on the morphodynamics of cells migrating in vivo.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
直接从图像数据中了解生物结构(蛋白质、细胞、器官)的健康和病理形状对于理解它们在活体中的作用至关重要。它对人类健康和社会的影响范围从我们对癌症的理解到神经退行性疾病的诊断。这份职业建议书将评估和开发可靠的形状分析方法,这些方法可以利用最近的生物成像数据爆炸,促进我们对生命基本规则的理解,并使数据驱动的生物医学取得突破。与研究活动紧密结合,教育和推广的目标是通过面向高中生的新颖艺术科学表演、用于形状分析的几何机器学习的开创性课程、研究生培训和面向广大受众的免费社区推广讲座,吸引不同的受众参与形状分析和生物科学。尽管形状分析领域取得了令人印象深刻的进展,但由于计算和统计方面的障碍,它被阻止部署到生物科学中。这带来了与结果解释相关的挑战,不一致的分析有可能将科学结论推向错误的方向--对于一个最终研究人类健康的学科来说,这是一个严重的缺陷。在数学中,(生物)形状可以表示为关键点的形状、曲线的形状或曲面的形状。关联的形状数据空间表示了非欧氏流形的常见抽象几何结构。这个项目将利用这些共性来建立一个一致的数值框架,以系统地和详尽地评估机器学习算法在形状空间上可能存在的不一致。特别是,它将提供对非欧氏流形上的测地线和多项式回归模型的深入研究。这些发现将被用于一项先导性研究,该研究将可靠地提取活体迁移细胞形态动力学的生物学相关参数。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nina Miolane其他文献
Heterogeneous reconstruction of deformable atomic models in Cryo-EM
冷冻电镜中可变形原子模型的异质重建
- DOI:
10.48550/arxiv.2209.15121 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Y. Nashed;A. Peck;Julien N. P. Martel;A. Levy;Bongjin Koo;Gordon Wetzstein;Nina Miolane;D. Ratner;F. Poitevin - 通讯作者:
F. Poitevin
Barron’s Theorem for Equivariant Networks
等变网络的巴伦定理
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Hannah Lawrence;S. Sanborn;Christian Shewmake;Simone Azeglio;Arianna Di Bernardo;Nina Miolane - 通讯作者:
Nina Miolane
Topologically Constrained Template Estimation via Morse-Smale Complexes Controls Its Statistical Consistency
通过 Morse-Smale 复合体的拓扑约束模板估计控制其统计一致性
- DOI:
10.1137/17m1129222 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Nina Miolane;S. Holmes;X. Pennec - 通讯作者:
X. Pennec
Geodesic Regression Characterizes 3D Shape Changes in the Female Brain During Menstruation
测地线回归表征女性大脑在月经期间的 3D 形状变化
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Adele Myers;Caitlin M. Taylor;Emily Jacobs;Nina Miolane - 通讯作者:
Nina Miolane
Exact Visualization of Deep Neural Network Geometry and Decision Boundary
深度神经网络几何和决策边界的精确可视化
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ahmed Imtiaz Humayun;Randall Balestriero;Richard Baraniuk;Arianna Di Bernardo;Nina Miolane;Richard Baraniuk;Humayun Balestriero Baraniuk - 通讯作者:
Humayun Balestriero Baraniuk
Nina Miolane的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nina Miolane', 18)}}的其他基金
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313150 - 财政年份:2023
- 资助金额:
$ 49.64万 - 项目类别:
Continuing Grant
Collaborative Research: A Unifying Deep Learning Framework Using Cell Complex Neural Networks
协作研究:使用细胞复杂神经网络的统一深度学习框架
- 批准号:
2134241 - 财政年份:2021
- 资助金额:
$ 49.64万 - 项目类别:
Standard Grant
相似海外基金
Advancing Governance and Resilience for Climate Adaptation through Cultural Heritage (AGREE)
通过文化遗产促进气候适应的治理和抵御能力(同意)
- 批准号:
AH/Z000017/1 - 财政年份:2024
- 资助金额:
$ 49.64万 - 项目类别:
Research Grant
Advancing Child and Youth-led Climate Change Education with Country
与国家一起推进儿童和青少年主导的气候变化教育
- 批准号:
DP240100968 - 财政年份:2024
- 资助金额:
$ 49.64万 - 项目类别:
Discovery Projects
Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
- 批准号:
ES/Z502789/1 - 财政年份:2024
- 资助金额:
$ 49.64万 - 项目类别:
Research Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 49.64万 - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Green Chemistry: Advancing Equity, Relevance, and Environmental Justice
HSI 实施和评估项目:绿色化学:促进公平、相关性和环境正义
- 批准号:
2345355 - 财政年份:2024
- 资助金额:
$ 49.64万 - 项目类别:
Continuing Grant
AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
- 批准号:
2341110 - 财政年份:2024
- 资助金额:
$ 49.64万 - 项目类别:
Cooperative Agreement
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
- 批准号:
2406511 - 财政年份:2024
- 资助金额:
$ 49.64万 - 项目类别:
Standard Grant
Planning: Advancing Discovery on a Sustainable National Research Enterprise
规划:推进可持续国家研究企业的发现
- 批准号:
2412406 - 财政年份:2024
- 资助金额:
$ 49.64万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414607 - 财政年份:2024
- 资助金额:
$ 49.64万 - 项目类别:
Standard Grant
Photonic-Enabled THz Duplex Metasurface: Advancing Communication and Sensing
光子太赫兹双工超表面:推进通信和传感
- 批准号:
24K17324 - 财政年份:2024
- 资助金额:
$ 49.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists