I-Corps: A Scalable Cloud-based Route Optimization Software for Efficient Aerial and Road Logistics
I-Corps:可扩展的基于云的路线优化软件,用于高效的空中和公路物流
基本信息
- 批准号:2240977
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of a software application to generate optimized route plans for parcel delivery. The goal is to empower last-mile service providers who employ electric trucks and a mixed truck-drone fleet. The adoption of electric trucks and autonomous drones for last-mile logistics has risen steadily in the United States due to growing parcel volumes, rising costs, changing customer expectations, and increasing corporate climate pledges. Lack of capabilities in the existing technology limits the safe, seamless and efficient use of such emerging ground and aerial vehicles. The proposed software application may meet the emerging market needs by enabling logistic managers, route planners, dispatchers, and truck drivers with faster planning, greater visibility, real-time tracking and turn-by-turn navigation. This may allow service providers to lower supply chain costs and be competitive while facilitating last-mile delivery solutions that lead to lower carbon emissions and faster fulfillment. These capabilities may accelerate the adoption of electric trucks and drones for package delivery and alleviate the growing strain on this distribution system.This I-Corps project is based on the development of a cloud-based route optimization software that will generate last-mile distribution plans for electric trucks and hybrid truck-drone systems. The proposed machine learning and optimization-based decomposition algorithms are designed to exploit problem-specific characteristics, such as battery constraints, charging operations, and payload capacity, to efficiently solve complex routing problems. The algorithm also may account for real-life spatial (e.g., no-fly zones), temporal (e.g., time-of-day operating restrictions) and logistical (e.g., customer availability) constraints to ensure practical route plans. In addition, the proposed technology also may allow an active traffic management strategy by generating an alternative route plan in real-time using a deep reinforcement learning-based dynamic rerouting model. The proposed route optimization software may lead to new theories and contribute to the state-of-the-art knowledge on route planning methods and advance the capabilities of route optimization software to handle new logistics technologies for efficient ground and aerial last-mile delivery service.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目更广泛的影响/商业潜力是开发一个软件应用程序,为包裹递送生成优化的路线计划。 其目标是为使用电动卡车和混合卡车无人机车队的最后一英里服务提供商提供支持。在美国,由于包裹量的增长、成本的上升、客户期望的变化以及企业气候承诺的增加,电动卡车和自动驾驶无人机在最后一英里物流中的应用稳步上升。现有技术能力的缺乏限制了安全、无缝和有效地使用这种新兴的地面和空中交通工具。所提出的软件应用程序可以通过使物流管理员、路线规划者、调度员和卡车司机具有更快的规划、更高的可见性、实时跟踪和逐向导航来满足新兴市场的需求。这可能使服务提供商能够降低供应链成本并具有竞争力,同时促进最后一英里交付解决方案,从而降低碳排放并加快履行。这些功能可能会加速电动卡车和无人机在包裹递送中的采用,并缓解配送系统日益增长的压力。I-Corps项目基于基于云的路线优化软件的开发,该软件将为电动卡车和混合动力卡车-无人机系统生成最后一英里配送计划。 所提出的基于机器学习和优化的分解算法旨在利用特定于问题的特征,例如电池约束、充电操作和有效载荷容量,以有效地解决复杂的路由问题。该算法还可以考虑现实生活中的空间(例如,禁飞区),时间(例如,一天中的时间操作限制)和后勤(例如,客户可用性)约束,以确保实际的路线计划。此外,所提出的技术还可以通过使用基于深度强化学习的动态重新路由模型实时生成替代路线计划来允许主动交通管理策略。所提出的路线优化软件可能会导致新的理论和有助于国家的最先进的知识路线规划方法和推进路线优化软件的能力,以处理新的物流技术,为有效的地面和空中最后,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sharan Srinivas其他文献
Collaborative Human–Robot Teaming for Dynamic Order Picking: Interventionist strategies for improving warehouse intralogistics operations
用于动态订单拣选的协作人机团队:改进仓库内部物流操作的干预策略
- DOI:
10.1016/j.tre.2025.104082 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:8.800
- 作者:
Shitao Yu;Sharan Srinivas - 通讯作者:
Sharan Srinivas
Collaborative order picking with multiple pickers and robots: Integrated approach for order batching, sequencing and picker-robot routing
具有多个拣货员和机器人的协同拣货:订单分批、排序和拣货员-机器人路径规划的集成方法
- DOI:
10.1016/j.ijpe.2022.108634 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:10.000
- 作者:
Sharan Srinivas;Shitao Yu - 通讯作者:
Shitao Yu
EFFECTS OF OPTIMISM IN ADOLESCENCE ON CARDIOVASCULAR EVENT RISK IN ADULTHOOD
- DOI:
10.1016/s0735-1097(19)32375-7 - 发表时间:
2019-03-12 - 期刊:
- 影响因子:
- 作者:
Sharan Srinivas;Kavin Anand;Anand Chockalingam - 通讯作者:
Anand Chockalingam
Order acceptance and scheduling on non-identical parallel machines with dependent setup times: new mixed integer programming formulations
- DOI:
10.1007/s10696-025-09602-z - 发表时间:
2025-03-10 - 期刊:
- 影响因子:3.200
- 作者:
Bobin Cherian Jos;Chandrasekharan Rajendran;Sharan Srinivas - 通讯作者:
Sharan Srinivas
Sharan Srinivas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sharan Srinivas', 18)}}的其他基金
PFI-TT: Cloud-based Route Management Platform for Optimizing Last-Mile Logistics of Electric Truck and Drone Operations
PFI-TT:基于云的路线管理平台,用于优化电动卡车和无人机运营的最后一英里物流
- 批准号:
2313887 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
- 批准号:
2313738 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
A scalable cloud-based framework for multi-modal mapping across single neuron omics, morphology and electrophysiology
一个可扩展的基于云的框架,用于跨单个神经元组学、形态学和电生理学的多模式映射
- 批准号:
10725550 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Scalable Stream Processing in Hybrid Edge-Cloud Infrastructures
混合边缘云基础设施中的可扩展流处理
- 批准号:
DP230100260 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Discovery Projects
Postdoctoral Fellowship: OPP-PRF: Disentangling Ice-sheet Internal and Basal Processes through Novel Ice-penetrating Radar Integration Built on Scalable, Cloud-based Infrastructure
博士后奖学金:OPP-PRF:通过基于可扩展、基于云的基础设施构建的新型透冰雷达集成来解开冰盖内部和基础过程
- 批准号:
2317927 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Scalable Federated Learning and Analytics with Communication Efficiency in Mobile Cloud Computing
移动云计算中具有通信效率的可扩展联合学习和分析
- 批准号:
RGPIN-2022-04782 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: PPoSS: LARGE: Scalable Specialization in Distributed Edge-Cloud Systems – The Extended Reality Case
协作研究:PPoSS:大型:分布式边缘云系统的可扩展专业化 — 扩展现实案例
- 批准号:
2217144 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Development of advanced scalable 3D spatial techniques for multi-spectral LiDAR point cloud modeling of boreal forest inventory attributes, above-ground carbon, and wildfire fuel.
开发先进的可扩展 3D 空间技术,用于北方森林库存属性、地上碳和野火燃料的多光谱 LiDAR 点云建模。
- 批准号:
570298-2022 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
OAC Core: A Scalable and Deployable Container Orchestration Cyber Infrastructure Toolkit for Deploying Big Data Analytics Applications in Public Cloud
OAC Core:用于在公共云中部署大数据分析应用程序的可扩展和可部署的容器编排网络基础设施工具包
- 批准号:
2212256 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Electronic Medical Records Ecosystem Cloud Transition Investigation, Planning, and Development for Robust, Scalable and Secure Long-Term Support
电子病历生态系统云转型调查、规划和开发,以提供强大、可扩展和安全的长期支持
- 批准号:
555774-2020 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Applied Research and Development Grants - Level 3
Collaborative Research: PPoSS: LARGE: Scalable Specialization in Distributed Edge-Cloud Systems – The Extended Reality Case
协作研究:PPoSS:大型:分布式边缘云系统的可扩展专业化 — 扩展现实案例
- 批准号:
2217070 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant