Collaborative Research: Remote epitaxy on van der Waals materials: unveiling adatom interaction, growing single-crystal membranes, and producing unconventional heterostructures

合作研究:范德华材料的远程外延:揭示吸附原子相互作用、生长单晶膜以及产生非常规异质结构

基本信息

  • 批准号:
    2240994
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

PART 1: NON-TECHNICAL DESCRIPTIONScience and technology have developed alongside with discovery of new materials platform, such as carbon nanotubes, or synthetic polymers. Instead of chasing after a completely new materials, the research team targets a novel twist, making currently existing materials to become flatter, thinner, and lighter. Back in 2017, the principal investigator invented remote epitaxy, which allows growing nanoscale materials on graphene-coated templates to be exfoliated afterwards. These thin freestanding materials can become building blocks for lightweight, flexible devices having unprecedented performance. Until now, studies on remote epitaxy have been mostly limited to empirical observations on materials such as gallium nitride and gallium arsenide typically used in semiconductors. To utilize remote epitaxy as an ideal platform for growth and hetero-integration between various materials systems, the research team aims to study the mechanism of remote epitaxy at a fundamental level. By exploring the mechanism on various two-dimensional (2D) and three-dimensional (3D) materials, the research team expects to create a wider range of materials systems available for remote epitaxy. Also, being able to combine different materials systems together can benefit the physical sciences by discovering new functionalities, bringing advancements in engineering sciences and industry by improving current device fabrication techniques and their performances. PART 2: TECHNICAL DESCRIPTIONThe research team plans to focus on answering three major questions to understand remote epitaxy further: (1) the nature of the adatoms interaction with the underlying 2D/3D substrates, (2) the impacts of 2D materials and interfaces on remote epitaxy, and (3) the dynamic processes involved in adatom/nuclei migration and defect formation on 2D surfaces. To answer these questions, the research team will first reveal whether the remote epitaxy truly occurs in a ‘remote’ sense, which is the most fundamental conundrum that precedes any other questions. This has been difficult to answer because one can easily observe only the results of epitaxy, not the nucleation of adatoms. This issue is tackled by intentionally patterning the 2D layer and employing various materials with different growth properties as the epilayers. Second, impact of 2D layers is explored by studying how the type, crystallinity, and thickness of 2D interlayers alter the remote interaction of adatoms and substrates. In order to show the intrinsic role of 2D layers, direct growth of 2D layers is attempted on various substrates having different ionicity. Third, thermodynamics and kinetics of adatoms, their mergence to form nuclei, and nucleus-nucleus interaction on 2D layers are studied by understanding the nucleation mechanism, performing defect analysis, and exfoliating epilayers. Based on these results, the research team plans to demonstrate high-quality ultrathin films grown by remote epitaxy on directly-grown 2D layers with engineered nucleation conditions. As remote epitaxy allows mixed dimensional heterostructures, further study is done on 3D/various 2D/3D sandwiched structures to investigate new physical couplings between electronic states and magnetic properties. To the scientific community, these results are expected to utilize remote epitaxy for studying multifunctional and coupled material platforms that were not achievable by conventional methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第一部分:非技术支持随着新材料平台的发现,如碳纳米管或合成聚合物,科学技术也在发展。研究团队没有追逐全新的材料,而是瞄准了一种新颖的转折,使现有的材料变得更平、更薄、更轻。早在2017年,首席研究员发明了远程外延,它允许在石墨烯涂层模板上生长纳米级材料,然后剥离。这些薄的独立式材料可以成为具有前所未有的性能的轻质柔性设备的构建块。到目前为止,对远程外延的研究主要限于对半导体中常用的氮化镓和砷化镓等材料的经验观察。为了利用远程外延作为各种材料系统之间生长和异质集成的理想平台,研究团队旨在从基础层面研究远程外延的机制。通过探索各种二维(2D)和三维(3D)材料的机制,研究小组希望创造出更广泛的可用于远程外延的材料系统。此外,能够将联合收割机不同的材料系统组合在一起可以通过发现新的功能而有益于物理科学,通过改进当前的器件制造技术及其性能而带来工程科学和工业的进步。第二部分:研究团队计划专注于回答三个主要问题,以进一步了解远程外延:(1)吸附原子与底层2D/3D衬底相互作用的性质,(2)2D材料和界面对远程外延的影响,以及(3)2D表面上吸附原子/核迁移和缺陷形成的动态过程。为了回答这些问题,研究小组将首先揭示远程外延是否真的在“远程”意义上发生,这是先于任何其他问题的最基本的难题。这很难回答,因为人们可以很容易地观察到外延的结果,而不是吸附原子的成核。这个问题通过有意地图案化2D层并采用具有不同生长特性的各种材料作为外延层来解决。其次,探讨了二维层的影响,通过研究如何的类型,结晶度和厚度的二维夹层改变吸附原子和基板的远程相互作用。为了显示2D层的内在作用,尝试在具有不同离子性的各种衬底上直接生长2D层。第三,吸附原子的热力学和动力学,它们的合并形成核,和核-核相互作用的二维层上的理解的成核机制,进行缺陷分析,剥离外延层进行了研究。基于这些结果,研究小组计划展示通过远程外延在直接生长的2D层上生长的高质量薄膜,并设计成核条件。由于远程外延允许混合维异质结构,进一步研究3D/各种2D/3D三明治结构,以研究电子态和磁性之间新的物理耦合。对于科学界来说,这些成果有望利用远程外延技术研究传统方法无法实现的多功能和耦合材料平台。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeehwan Kim其他文献

Fabrication of dislocation-free Si films under uniaxial tension on porous Si compliant substrates
  • DOI:
    10.1016/j.tsf.2008.03.044
  • 发表时间:
    2008-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jeehwan Kim;Jae Young Lee;Ya-Hong Xie
  • 通讯作者:
    Ya-Hong Xie
Path towards graphene commercialization from lab to market
从实验室到市场的石墨烯商业化之路
  • DOI:
    10.1038/s41565-019-0555-2
  • 发表时间:
    2019-10-03
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Wei Kong;Hyun Kum;Sang-Hoon Bae;Jaewoo Shim;Hyunseok Kim;Lingping Kong;Yuan Meng;Kejia Wang;Chansoo Kim;Jeehwan Kim
  • 通讯作者:
    Jeehwan Kim
Depth-controllable ultra shallow Indium Gallium Zinc Oxide/Gallium Arsenide hetero junction diode
深度可控超浅铟镓锌氧化物/砷化镓异质结二极管
  • DOI:
    10.1016/j.jallcom.2013.02.012
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Seong;S. Choi;Jongtaek Lee;Jeehwan Kim;W. Jung;Hyun‐Yong Yu;Y. Roh;Jin
  • 通讯作者:
    Jin
Integration of bulk materials with two-dimensional materials for physical coupling and applications
用于物理耦合和应用的块状材料与二维材料的集成
  • DOI:
    10.1038/s41563-019-0335-2
  • 发表时间:
    2019-05-21
  • 期刊:
  • 影响因子:
    38.500
  • 作者:
    Sang-Hoon Bae;Hyun Kum;Wei Kong;Yunjo Kim;Chanyeol Choi;Byunghun Lee;Peng Lin;Yongmo Park;Jeehwan Kim
  • 通讯作者:
    Jeehwan Kim
The future of two-dimensional semiconductors beyond Moore’s law
超越摩尔定律的二维半导体的未来
  • DOI:
    10.1038/s41565-024-01695-1
  • 发表时间:
    2024-07-01
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Ki Seok Kim;Junyoung Kwon;Huije Ryu;Changhyun Kim;Hyunseok Kim;Eun-Kyu Lee;Doyoon Lee;Seunghwan Seo;Ne Myo Han;Jun Min Suh;Jekyung Kim;Min-Kyu Song;Sangho Lee;Minsu Seol;Jeehwan Kim
  • 通讯作者:
    Jeehwan Kim

Jeehwan Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeehwan Kim', 18)}}的其他基金

Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
  • 批准号:
    2329190
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Flexible Optoelectronic Systems for Chronic Bi-Directional Neural Interfacing
用于慢性双向神经接口的柔性光电系统
  • 批准号:
    2001231
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Wafer-Scale Nanomanufacturing of 2D Atomic Layer Material Heterostructures Through Exfoliation and Transfer
合作研究:通过剥离和转移进行二维原子层材料异质结构的晶圆级纳米制造
  • 批准号:
    1825731
  • 财政年份:
    2018
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
E2CDA: Type I: Collaborative Research: Energy-Efficient Artificial Intelligence with Binary RRAM and Analog Epitaxial Synaptic Arrays
E2CDA:I 型:协作研究:采用二进制 RRAM 和模拟外延突触阵列的节能人工智能
  • 批准号:
    1740184
  • 财政年份:
    2017
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Laboratory Measurements of Oxygen (O) and Nitrogen (N2) Ultraviolet (UV) Cross Sections by Particle Impact for Remote Sensing of Thermosphere O/N2 Variation
合作研究:通过粒子撞击实验室测量氧气 (O) 和氮气 (N2) 紫外线 (UV) 截面,以遥感热层 O/N2 变化
  • 批准号:
    2334619
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: Wireless Federated Fog Computing for Remote Industry 4.0 Applications
合作研究:IRES Track I:用于远程工业 4.0 应用的无线联合雾计算
  • 批准号:
    2417064
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Laboratory Measurements of Oxygen (O) and Nitrogen (N2) Ultraviolet (UV) Cross Sections by Particle Impact for Remote Sensing of Thermosphere O/N2 Variation
合作研究:通过粒子撞击实验室测量氧气 (O) 和氮气 (N2) 紫外线 (UV) 截面,以遥感热层 O/N2 变化
  • 批准号:
    2334618
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320259
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320260
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: ETAUS Meshed Observations of THE Remote Subsurface with Heterogeneous Intelligent Platforms (MOTHERSHIP)
合作研究:创意实验室:ETAUS 通过异构智能平台对远程地下进行网格观测 (MOTHERSHIP)
  • 批准号:
    2322056
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Collaborative Research: Ideas Lab: ETAUS Meshed Observations of THE Remote Subsurface with Heterogeneous Intelligent Platforms (MOTHERSHIP)
合作研究:创意实验室:ETAUS 通过异构智能平台对远程地下进行网格观测 (MOTHERSHIP)
  • 批准号:
    2322055
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
RAPID/Collaborative Research: Datasets for Uncrewed Aerial System (UAS) and Remote Responder Performance from Hurricane Ian
RAPID/协作研究:飓风伊恩无人飞行系统 (UAS) 和远程响应器性能的数据集
  • 批准号:
    2306453
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: IRES Track I: Wireless Federated Fog Computing for Remote Industry 4.0 Applications
合作研究:IRES Track I:用于远程工业 4.0 应用的无线联合雾计算
  • 批准号:
    2246390
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: ETAUS Meshed Observations of THE Remote Subsurface with Heterogeneous Intelligent Platforms (MOTHERSHIP)
合作研究:创意实验室:ETAUS 通过异构智能平台对远程地下进行网格观测 (MOTHERSHIP)
  • 批准号:
    2322058
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了