Collaborative Research: FuSe: Monolithic 3D Integration (M3D) of 2D Materials-Based CFET Logic Elements towards Advanced Microelectronics
合作研究:FuSe:面向先进微电子学的基于 2D 材料的 CFET 逻辑元件的单片 3D 集成 (M3D)
基本信息
- 批准号:2329190
- 负责人:
- 金额:$ 44.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-Technical:Electronic integration has proven foundational to modern information society. Specifically, the up-scaling in semiconductor industry is one of the most critical steps towards reduced production cost, enhanced performance, and integration density. In this project, a potential transformative technique for developing next-generation semiconductor computing processor is proposed. By prototyping novel integrated electronic devices based on two-dimensional (2D) semiconductors with atomic thickness, ultrathin microelectronic logic element is studied, leading to not only fundamental physics advancements in low-dimensional materials community, but also major advances in semiconductor technologies synergizing vital research areas of materials, electronic devices, and novel circuity architecture. College students will be trained and involved for workforce upgrade and knowledge dissemination. Workshops, symposiums, and tutorials are planned, as well as technical exchange at international conferences to enhance the impact and findings of this project. Collaborations and technical discussions are also planned with semiconductor companies to foster technological translation workforce alignment.Technical:An interdisciplinary study on the three-dimensional (3D) integration of complementary-field effect transistors (C-FET) made by 2D material is proposed for the ultimate solution for the next-generation computing processors. Despite the recent advancement using multi-dimensional gate control technology, the current material and device architectures still encounter fundamental limitation on integration density and multifunctionality. A groundbreaking paradigm leap synergizing the material- and device- and circuit- level has thus attracted enormous interest from both academia and industry. Three significant breakthroughs will be made: (i) Single-crystalline 2D materials have atomic thickness and self-confine nature, it maintains excellent electrical property even under sub-nanometer scale, securing ultimate scalability. (ii) C-FETs are based on the concept of 3D heterogeneous integration of CMOS devices, allowing aggressive cell scaling to realize compact logic circuity. (iii) C-FET based monolithic 3D integration with image sensors will be achieved to explore the possibility of various integration capability based on the C-FET-based circuits. Four objectives will be implemented to promote the suggested breakthroughs: (1) Using the geometrically confined growth method that has recently proven groundbreaking success, high-quality single-crystal 2D materials can be manufactured at large-scale with high yield. (2) Single-crystalline 2D material-based C-FETs will be fabricated with competitive state-of-the-art performance. (3) Enabled with such C-FETs, circuit design of logic cells can be implemented including a full adder and a full substractor. (4) Ultimately, a novel encoder can be realized leveraging this new type of microprocessor, which is a main component of analog-to-digital converters (ADC). Through this, M3D integration with image sensors will be demonstrated to explore integration possibility of the C-FETs circuits. The next-generation computing processor proposed in this project will provide detailed understanding on how to demonstrate high-quality 2D materials, C-FETs, and C-FET based circuits that are key to maximizing their full potential, ultimate scalability and gate-controllability, for semiconductor technologies and industries. The successful achievement of these objectives will pave a new avenue for the next-generation computing processor that can meet the computational demands in the era of data explosion with less power consumption, leading to a considerable surge of interest in the science and application of 2D semiconductors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术:电子集成已被证明是现代信息社会的基础。具体而言,半导体工业的规模扩大是降低生产成本、提高性能和集成密度的最关键步骤之一。在这个项目中,提出了一种潜在的变革技术,为开发下一代半导体计算处理器。通过原型设计基于具有原子厚度的二维(2D)半导体的新型集成电子器件,研究了微电子逻辑元件,不仅导致低维材料社区的基础物理进步,而且还导致半导体技术的重大进步,从而协同材料、电子器件和新型电路架构的重要研究领域。大学生将接受培训,参与劳动力升级和知识传播。计划举办讲习班、专题讨论会和辅导班,并在国际会议上进行技术交流,以加强该项目的影响和成果。此外,还计划与半导体企业进行合作和技术讨论,以促进技术翻译人才的整合。技术:为下一代计算处理器的最终解决方案,提出了对2D材料制造的互补场效应晶体管(C-FET)进行3D集成的跨学科研究。尽管最近使用多维栅极控制技术的进步,当前的材料和器件架构仍然遇到集成密度和多功能性的基本限制。一个突破性的范式飞跃协同材料和设备和电路水平,因此吸引了学术界和工业界的巨大兴趣。三个重大突破将实现:(i)单晶2D材料具有原子厚度和自限性,即使在亚纳米尺度下也保持优异的电学性能,确保最终的可扩展性。(ii)C-FET基于CMOS器件的3D异构集成概念,允许积极的单元缩放以实现紧凑的逻辑电路。(iii)将实现基于C-FET的单片3D集成图像传感器,以探索基于C-FET的电路的各种集成能力的可能性。将实现四个目标以促进所建议的突破:(1)使用最近被证明取得突破性成功的几何限制生长方法,可以大规模高产量地制造高质量的单晶2D材料。(2)单晶2D材料为基础的C-FET将制造具有竞争力的最先进的性能。(3)利用这种C-FET,可以实现包括全加器和全减法器的逻辑单元的电路设计。(4)最终,一种新型的编码器可以实现利用这种新型的微处理器,这是一个主要组成部分的模数转换器(ADC)。通过这一点,M3 D集成与图像传感器将被证明,探索集成的可能性的C-FET电路。该项目中提出的下一代计算处理器将详细了解如何展示高质量的2D材料,C-FET和基于C-FET的电路,这些电路是最大限度地发挥其全部潜力,最终可扩展性和栅极可控性的关键,用于半导体技术和行业。这些目标的成功实现将为下一代计算处理器铺平一条新的道路,以更低的功耗满足数据爆炸时代的计算需求,该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeehwan Kim其他文献
Fabrication of dislocation-free Si films under uniaxial tension on porous Si compliant substrates
- DOI:
10.1016/j.tsf.2008.03.044 - 发表时间:
2008-09-01 - 期刊:
- 影响因子:
- 作者:
Jeehwan Kim;Jae Young Lee;Ya-Hong Xie - 通讯作者:
Ya-Hong Xie
Path towards graphene commercialization from lab to market
从实验室到市场的石墨烯商业化之路
- DOI:
10.1038/s41565-019-0555-2 - 发表时间:
2019-10-03 - 期刊:
- 影响因子:34.900
- 作者:
Wei Kong;Hyun Kum;Sang-Hoon Bae;Jaewoo Shim;Hyunseok Kim;Lingping Kong;Yuan Meng;Kejia Wang;Chansoo Kim;Jeehwan Kim - 通讯作者:
Jeehwan Kim
Depth-controllable ultra shallow Indium Gallium Zinc Oxide/Gallium Arsenide hetero junction diode
深度可控超浅铟镓锌氧化物/砷化镓异质结二极管
- DOI:
10.1016/j.jallcom.2013.02.012 - 发表时间:
2013 - 期刊:
- 影响因子:6.2
- 作者:
Seong;S. Choi;Jongtaek Lee;Jeehwan Kim;W. Jung;Hyun‐Yong Yu;Y. Roh;Jin - 通讯作者:
Jin
Integration of bulk materials with two-dimensional materials for physical coupling and applications
用于物理耦合和应用的块状材料与二维材料的集成
- DOI:
10.1038/s41563-019-0335-2 - 发表时间:
2019-05-21 - 期刊:
- 影响因子:38.500
- 作者:
Sang-Hoon Bae;Hyun Kum;Wei Kong;Yunjo Kim;Chanyeol Choi;Byunghun Lee;Peng Lin;Yongmo Park;Jeehwan Kim - 通讯作者:
Jeehwan Kim
The future of two-dimensional semiconductors beyond Moore’s law
超越摩尔定律的二维半导体的未来
- DOI:
10.1038/s41565-024-01695-1 - 发表时间:
2024-07-01 - 期刊:
- 影响因子:34.900
- 作者:
Ki Seok Kim;Junyoung Kwon;Huije Ryu;Changhyun Kim;Hyunseok Kim;Eun-Kyu Lee;Doyoon Lee;Seunghwan Seo;Ne Myo Han;Jun Min Suh;Jekyung Kim;Min-Kyu Song;Sangho Lee;Minsu Seol;Jeehwan Kim - 通讯作者:
Jeehwan Kim
Jeehwan Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeehwan Kim', 18)}}的其他基金
Collaborative Research: Remote epitaxy on van der Waals materials: unveiling adatom interaction, growing single-crystal membranes, and producing unconventional heterostructures
合作研究:范德华材料的远程外延:揭示吸附原子相互作用、生长单晶膜以及产生非常规异质结构
- 批准号:
2240994 - 财政年份:2023
- 资助金额:
$ 44.63万 - 项目类别:
Standard Grant
Flexible Optoelectronic Systems for Chronic Bi-Directional Neural Interfacing
用于慢性双向神经接口的柔性光电系统
- 批准号:
2001231 - 财政年份:2020
- 资助金额:
$ 44.63万 - 项目类别:
Standard Grant
Collaborative Research: Wafer-Scale Nanomanufacturing of 2D Atomic Layer Material Heterostructures Through Exfoliation and Transfer
合作研究:通过剥离和转移进行二维原子层材料异质结构的晶圆级纳米制造
- 批准号:
1825731 - 财政年份:2018
- 资助金额:
$ 44.63万 - 项目类别:
Standard Grant
E2CDA: Type I: Collaborative Research: Energy-Efficient Artificial Intelligence with Binary RRAM and Analog Epitaxial Synaptic Arrays
E2CDA:I 型:协作研究:采用二进制 RRAM 和模拟外延突触阵列的节能人工智能
- 批准号:
1740184 - 财政年份:2017
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
- 批准号:
2416375 - 财政年份:2023
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
- 批准号:
2328741 - 财政年份:2023
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
- 批准号:
2328906 - 财政年份:2023
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
- 批准号:
2328908 - 财政年份:2023
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
- 批准号:
2328947 - 财政年份:2023
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant
FuSe/Collaborative Research: Heterogeneous Integration in Power Electronics for High-Performance Computing (HIPE-HPC)
FuSe/合作研究:用于高性能计算的电力电子异构集成 (HIPE-HPC)
- 批准号:
2329063 - 财政年份:2023
- 资助金额:
$ 44.63万 - 项目类别:
Continuing Grant