U.S.-Ireland R&D Partnership: Intelligent Data Harvesting for Multi-Scale Building Stock Classification and Energy Performance Prediction

美国-爱尔兰 R

基本信息

  • 批准号:
    2110171
  • 负责人:
  • 金额:
    $ 38.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2022-02-28
  • 项目状态:
    已结题

项目摘要

This joint trilateral project is in response to NSF Dear Colleague Letter: United States- Ireland-Northern Ireland R&D Partnership (NSF 20-064) in the areas of energy and sustainability. Residential buildings account for 14%-27% of greenhouse gas (GHG) emissions in the three jurisdictions and cause significant negative impact on the environment. Supported by NSF, the Science Foundation Ireland in the Republic of Ireland (RoI), and the Department for the Economy in Northern Ireland (NI), this joint research aims to reduce residential building energy consumption and related GHG emissions and environmental impacts across the three jurisdictions. The research will create decision support tools to inform policy makers, planners, and other stakeholders about the most beneficial residential retrofitting solutions at multiple scales (local to national). The methodology employed will lie at the confluence of various expertise, including green engineering of the NI team, building energy modeling and machine learning of the U.S. team, and information theory of the RoI team. The aim is to transform diverse public datasets in the three jurisdictions into actionable information. Empowered by this information, the anticipation is that better decisions can guide modern societies towards transformative green solutions for the built environment that leverage sustainable engineering systems and enable the creation of energy-efficient, healthy, and comfortable buildings for a nation's citizens. The approach is cognizant of society's need to provide ecological protection while maintaining favorable economic conditions.This joint research seeks to provide the foundational science needed to design, optimize, and deploy green engineering approaches that reduce residential building energy consumption and related GHG emissions. The interdisciplinary research targets to yield three results: 1) A methodology for data ingestion and an ontology and associated server that provides both a means of accessing and subsequently homogenizing data for both the data enrichment and the modeling processes. The intent is to enable previously unused data sources to be utilized as a whole to significantly improve the accuracy of modeling processes; 2) An advanced automated building energy model generation method powered by physics-informed machine learning, which can improve the efficiency of model generation, significantly reduce computing demand for large scale building energy prediction and protect building users' privacy. Algorithms will also be created to enable robust prediction with incomplete datasets; 3) A new complementary solution for predicting the GHG emissions reduction potential for stakeholders will be created to analyze near/zero GHG buildings in terms of energy performance. It is anticipated that these results will be beneficial both in terms of making buildings greener by reducing GHG emissions and energy consumption as well as decreasing operational costs. The plan is to seek the U.S. Department of Energy's Pacific Northwest National Laboratory to adopt the research results in their national building energy policy analysis for 139 million homes. The Northern Ireland Housing Executive will utilize this work to help predict decarbonization pathways for their housing stock of nearly 86,000 homes (10% of the housing stock in NI). The research will also assist the Sustainable Energy Authority of Ireland for its retrofit plan of 500,000 homes in the Republic of Ireland.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该三方联合项目是对NSF亲爱的同事信:美国-爱尔兰-北爱尔兰爱尔兰研发伙伴关系(NSF 20-064)在能源和可持续性领域的回应。住宅楼宇占三个司法管辖区温室气体排放量的14%至27%,对环境造成重大负面影响。在NSF、爱尔兰共和国爱尔兰科学基金会(RoI)和北方尔兰经济部(NI)的支持下,这项联合研究旨在减少三个司法管辖区的住宅建筑能耗和相关温室气体排放以及环境影响。该研究将创建决策支持工具,以告知政策制定者,规划者和其他利益相关者关于多个规模(从地方到国家)的最有益的住宅改造解决方案。所采用的方法将融合各种专业知识,包括NI团队的绿色工程,美国团队的建筑能源建模和机器学习,以及RoI团队的信息理论。其目的是将三个司法管辖区的各种公共数据集转化为可操作的信息。在这些信息的推动下,人们期望更好的决策能够引导现代社会为建筑环境提供变革性的绿色解决方案,这些解决方案利用可持续工程系统,并为一个国家的公民创造节能、健康和舒适的建筑。该方法认识到社会需要在保持良好经济条件的同时提供生态保护。该联合研究旨在提供设计、优化和部署绿色工程方法所需的基础科学,以减少住宅建筑能耗和相关GHG排放。跨学科研究的目标是产生三个结果:1)数据摄取的方法和本体和相关的服务器,为数据丰富和建模过程提供了访问和随后存储数据的方法。其目的是使以前未使用的数据源能够作为一个整体被利用,以显着提高建模过程的准确性; 2)一种由物理信息机器学习驱动的先进的自动化建筑能源模型生成方法,可以提高模型生成的效率,显着降低大规模建筑能源预测的计算需求,并保护建筑用户的隐私。还将创建算法,以实现对不完整数据集的稳健预测; 3)将创建一个新的补充解决方案,用于预测利益相关者的温室气体减排潜力,以分析近/零温室气体建筑的能源性能。预计这些结果将有利于通过减少温室气体排放和能源消耗以及降低运营成本使建筑物更加绿色。该计划将寻求美国能源部的太平洋西北国家实验室在其1.39亿家庭的国家建筑能源政策分析中采用研究结果。北方爱尔兰住房执行局将利用这项工作来帮助预测其近86,000套住房(占北爱尔兰住房存量的10%)的脱碳途径。该研究还将协助爱尔兰可持续能源管理局在爱尔兰共和国的500,000户家庭的改造计划。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Long-term carbon intensity reduction potential of K-12 school buildings in the United States
  • DOI:
    10.1016/j.enbuild.2023.112802
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Yizhi Yang;Yingli Lou;C. Payne;Y. Ye;W. Zuo
  • 通讯作者:
    Yizhi Yang;Yingli Lou;C. Payne;Y. Ye;W. Zuo
Long-term carbon emission reduction potential of building retrofits with dynamically changing electricity emission factors
  • DOI:
    10.1016/j.buildenv.2021.108683
  • 发表时间:
    2022-01-02
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Lou, Yingli;Ye, Yunyang;Zuo, Wangda
  • 通讯作者:
    Zuo, Wangda
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wangda Zuo其他文献

Erratum to: A Bayesian Network model for predicting cooling load of commercial buildings
  • DOI:
    10.1007/s12273-018-0499-8
  • 发表时间:
    2018-11-23
  • 期刊:
  • 影响因子:
    5.900
  • 作者:
    Sen Huang;Wangda Zuo;Michael D. Sohn
  • 通讯作者:
    Michael D. Sohn
Urban residential building stock synthetic datasets for building energy performance analysis
  • DOI:
    10.1016/j.dib.2024.110241
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Usman Ali;Sobia Bano;Mohammad Haris Shamsi;Divyanshu Sood;Cathal Hoare;Wangda Zuo;Neil Hewitt;James O'Donnell
  • 通讯作者:
    James O'Donnell
Tradeoffs among indoor air quality, financial costs, and COsub2/sub emissions for HVAC operation strategies to mitigate indoor virus in U.S. office buildings
美国办公楼 HVAC 运行策略中室内空气质量、财务成本和二氧化碳排放之间的权衡,以减轻室内病毒
  • DOI:
    10.1016/j.buildenv.2022.109282
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
    7.600
  • 作者:
    Cary A. Faulkner;John E. Castellini;Yingli Lou;Wangda Zuo;David M. Lorenzetti;Michael D. Sohn
  • 通讯作者:
    Michael D. Sohn
Ecological network analysis of integrated energy systems with Modelica: A novel biomimetic approach for building design and operation
使用 Modelica 进行综合能源系统的生态网络分析:一种用于建筑设计和运营的新型仿生方法
Long-term impact of electrification and retrofits of the U.S residential building in diverse locations
美国不同地区住宅建筑电气化和改造的长期影响
  • DOI:
    10.1016/j.buildenv.2024.112472
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    7.600
  • 作者:
    Yizhi Yang;Rosina Adhikari;Yingli Lou;James O'Donnell;Neil Hewitt;Wangda Zuo
  • 通讯作者:
    Wangda Zuo

Wangda Zuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wangda Zuo', 18)}}的其他基金

EAGER: Collaborative Research: Modernizing Cities via Smart Garden Alleys with Application in Makassar City
EAGER:合作研究:通过智能花园巷实现城市现代化并在望加锡市应用
  • 批准号:
    2241361
  • 财政年份:
    2022
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Standard Grant
U.S.-Ireland R&D Partnership: Intelligent Data Harvesting for Multi-Scale Building Stock Classification and Energy Performance Prediction
美国-爱尔兰 R
  • 批准号:
    2217410
  • 财政年份:
    2022
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Modernizing Cities via Smart Garden Alleys with Application in Makassar City
EAGER:合作研究:通过智能花园巷实现城市现代化并在望加锡市应用
  • 批准号:
    2025459
  • 财政年份:
    2020
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: IA: Big Data Analytics for Optimized Planning of Smart, Sustainable, and Connected Communities
BIGDATA:协作研究:IA:用于智能、可持续和互联社区优化规划的大数据分析
  • 批准号:
    1802017
  • 财政年份:
    2017
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: IA: Big Data Analytics for Optimized Planning of Smart, Sustainable, and Connected Communities
BIGDATA:协作研究:IA:用于智能、可持续和互联社区优化规划的大数据分析
  • 批准号:
    1633338
  • 财政年份:
    2016
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Standard Grant

相似国自然基金

关于不对称去芳香化反应/Ireland-Claisen重排反应的研究:构筑手性吲哚啉衍生物
  • 批准号:
    22001177
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Moving the dial on economic inactivity to build inclusive futures across Northern Ireland
扭转经济不活跃的局面,在整个北爱尔兰建立包容性的未来
  • 批准号:
    ES/Y502388/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Research Grant
Ireland and the 'ends' of the British Empire, 1886 to the present
爱尔兰和大英帝国的“终结”,1886 年至今
  • 批准号:
    MR/X036111/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Fellowship
'And many a strange adventure came my way in that time': Adaptation of the 13th c. French text 'The Quest of the Holy Grail' in 15th c. Ireland.
“在那段时间里,我经历了许多奇怪的冒险”:改编自 13 世纪。
  • 批准号:
    2506854
  • 财政年份:
    2024
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Studentship
Maximising the value of the 2021 Northern Ireland Census
最大化 2021 年北爱尔兰人口普查的价值
  • 批准号:
    ES/Z502777/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Research Grant
Realising the Potential of Census 2021 data in Northern Ireland: Engage, Inform and Train
实现北爱尔兰 2021 年人口普查数据的潜力:参与、提供信息和培训
  • 批准号:
    ES/Z502856/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Research Grant
The Role of Organised Victims in Transitional Justice in Turkey and Northern Ireland
有组织的受害者在土耳其和北爱尔兰过渡时期司法中的作用
  • 批准号:
    ES/Y007433/1
  • 财政年份:
    2023
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Fellowship
U.S.-Ireland R&D Partnership: Highly efficient magnetoelectric nano-antenna arrays with wide operational bandwidth
美国-爱尔兰 R
  • 批准号:
    2320320
  • 财政年份:
    2023
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Standard Grant
Bacterial-based Biosensor Digital Twin for Microbial Community Sensing (US-Ireland-R&D Partnership)
用于微生物群落感知的基于细菌的生物传感器数字孪生(美国-爱尔兰-R
  • 批准号:
    2316960
  • 财政年份:
    2023
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Standard Grant
Collaborative Research: US-Ireland R&D Partnership: Processing-Driven Nucleation Mediated Control for Manufacturing of Phase-Pure Ferroelectric Hafnia
合作研究:美国-爱尔兰 R
  • 批准号:
    2346484
  • 财政年份:
    2023
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Standard Grant
Collaborative Research: US-Ireland R&D Partnership: Processing-Driven Nucleation Mediated Control for Manufacturing of Phase-Pure Ferroelectric Hafnia
合作研究:美国-爱尔兰 R
  • 批准号:
    2149480
  • 财政年份:
    2023
  • 资助金额:
    $ 38.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了