Nonparametric Estimation and Inference with Network Data

网络数据的非参数估计和推理

基本信息

  • 批准号:
    2210561
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Network data is ubiquitous in the statistical, social, behavioral, and biomedical sciences. This type of dependent data captures interactions between the units of study, such as output between firms, trade between countries, or fundraising between politicians. Network-based information is widely used nowadays for both testing domain-specific hypotheses and policy-making decisions in data and decision sciences. However, the remarkable proliferation of network data in empirical work has not been accompanied by a complete development of statistical methods guiding its correct use and providing valid estimation and inference procedures. Current practice employing network data is limited by the few results available in the literature, and many estimation and inference problems of practical importance remain unresolved. In this project, the investigators seek to undertake a comprehensive study of non-parametric and semi-parametric statistical methods employing dyadic data, data indexed by pairs of units such as trade between two countries. The established methods and theory will serve as a building block for the analysis of more general network data. The investigators plan to develop general-purpose software to implement the main theoretical and methodological results. The project will provide training opportunities for graduate students.The research will focus on non-parametric and semi-parametric estimation and inference methods employing dyadic network data, which poses specific technical challenges due to its inherent lack of statistical independence. The project's ultimate goal is to develop comprehensive large-sample approximations leading to optimal and/or robust point estimation and statistical inference procedures for functional estimation, covering density and regression functions as special cases. To this end, the investigators will develop novel strong approximation results for stochastic processes, which will then be deployed to approximate the distribution of functional statistics based on dyadic network data. Minimax optimal uniform convergence rates for different non-/semi-parametric estimators using network data will also be established. The main theoretical results will then be applied to semiparametric estimation relying on network data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络数据在统计、社会、行为和生物医学科学中无处不在。这种类型的相关数据捕获研究单位之间的相互作用,例如公司之间的产出,国家之间的贸易或政治家之间的筹款。基于网络的信息如今被广泛用于测试特定领域的假设和数据和决策科学中的决策。然而,在实证工作中,网络数据的显着扩散并没有伴随着统计方法的完整发展,指导其正确使用,并提供有效的估计和推理程序。目前的做法,采用网络数据是有限的,在文献中提供的结果很少,许多估计和推理问题的实际重要性仍未得到解决。在这个项目中,调查人员试图采用二元数据,即按两个单位(如两国之间的贸易)编制索引的数据,对非参数和半参数统计方法进行全面研究。建立的方法和理论将作为一个积木更一般的网络数据的分析。研究人员计划开发通用软件来实现主要的理论和方法结果。该项目将为研究生提供培训机会,研究将集中在使用二元网络数据的非参数和半参数估计和推断方法,由于其固有的统计独立性不足,这带来了特定的技术挑战。该项目的最终目标是开发全面的大样本近似值,从而为函数估计提供最佳和/或稳健的点估计和统计推断程序,包括密度和回归函数作为特殊情况。为此,研究人员将为随机过程开发新的强近似结果,然后将其部署到基于二元网络数据的函数统计分布中。还将建立使用网络数据的不同非/半参数估计的极小极大最优一致收敛速度。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matias Cattaneo其他文献

A Permutation Test and Estimation Alternatives for the Regression Kink Design
回归扭结设计的排列测试和估计替代方案
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alberto Abadie;David Card;Matias Cattaneo;Raj Chetty;Avi Feller;Edward Glaeser;Paul Goldsmith;Guido Imbens;Maximilian Kasy;Larry Katz;Zhuan Pei;Mikkel Plagborg;Guillaume Pouliot
  • 通讯作者:
    Guillaume Pouliot

Matias Cattaneo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matias Cattaneo', 18)}}的其他基金

Partitioning-Based Learning Methods for Treatment Effect Estimation and Inference
基于分区的治疗效果估计和推理学习方法
  • 批准号:
    2241575
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Conference: Statistical Foundations of Data Science and their Applications
会议:数据科学的统计基础及其应用
  • 批准号:
    2304646
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
New Developments in Methodology for Program Evaluation
项目评估方法的新进展
  • 批准号:
    2019432
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Robust Inference for Kernel Smoothing and Related Problems
协作研究:核平滑及相关问题的鲁棒推理
  • 批准号:
    1947805
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
A Random Attention Model: Identification, Estimation and Testing
随机注意力模型:识别、估计和测试
  • 批准号:
    1628883
  • 财政年份:
    2016
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Flexible and Robust Data-driven Inference in Nonparametric and Semiparametric Econometrics
协作研究:非参数和半参数计量经济学中灵活且稳健的数据驱动推理
  • 批准号:
    1459931
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
New Methodological Developments for Inference in the Regression-Discontinuity Design
回归-不连续性设计中推理的新方法论发展
  • 批准号:
    1357561
  • 财政年份:
    2014
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Standard Asymptotic Theory for Semiparametric Estimators
合作研究:半参数估计的非标准渐近理论
  • 批准号:
    1122994
  • 财政年份:
    2011
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Small Bandwidth Asymptotic Theory for Kernel-Based Semiparametric Estimators
合作研究:基于核的半参数估计器的小带宽渐近理论
  • 批准号:
    0921505
  • 财政年份:
    2009
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似海外基金

Improvement of nonparametric inference based on kernel type estimation and resampling method, and its application
基于核类型估计和重采样方法的非参数推理改进及其应用
  • 批准号:
    22K11939
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: New Paradigms of Estimation and Inference in Constrained Nonparametric Models
职业:约束非参数模型中估计和推理的新范式
  • 批准号:
    2143468
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
  • 批准号:
    10297407
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
  • 批准号:
    10466912
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
  • 批准号:
    10610947
  • 财政年份:
    2021
  • 资助金额:
    $ 35万
  • 项目类别:
Optimal Nonparametric Estimation of High-Dimensional Functionals in Causal Inference
因果推理中高维泛函的最优非参数估计
  • 批准号:
    1810979
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
CAREER: Nonparametric function estimation: shape constraints, adaptation, inference and beyond
职业:非参数函数估计:形状约束、适应、推理等
  • 批准号:
    1654589
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Nonparametric Estimation and Inference: Shape Constraints, Model Selection, and Level Set Estimation
非参数估计和推理:形状约束、模型选择和水平集估计
  • 批准号:
    1712664
  • 财政年份:
    2017
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Locally Adaptive Nonparametric Estimation for the Modern Age - New Insights, Extensions, and Inference Tools
职业:现代局部自适应非参数估计 - 新见解、扩展和推理工具
  • 批准号:
    1554123
  • 财政年份:
    2016
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Collaborative Research: Estimation, Inference, and Computation for Finite Nonparametric Mixtures
协作研究:有限非参数混合物的估计、推理和计算
  • 批准号:
    1208994
  • 财政年份:
    2012
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了