Collaborative Research: Robust Inference for Kernel Smoothing and Related Problems

协作研究:核平滑及相关问题的鲁棒推理

基本信息

  • 批准号:
    1947805
  • 负责人:
  • 金额:
    $ 28.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Research in economics, public policy, and other related disciplines, as well as evidence-based policy-making decisions require accurate and efficient measurements. Efficient measurements require accurate, simple, and flexible statistical methods that can be easily implemented to draw conclusions from data. These methods are becoming increasingly important in the modern era of big data, high-speed computing and machine learning. New statistical methods for analyzing economic problems, including modern machine learning and similar data science approaches, are popular in economic theory because they usually offer a good compromise between flexibility and simplicity in measurement, but they are not always trusted because the results often depend on how these methods are implemented. This research will develop new methods that account for how the choices made in implementation affect the results obtained by the researcher. The proposed research offers new, modern statistical and econometric methods for analyzing large and complex data sets. These methods will produce results that do not depend on the specific details underlying how the models are implemented. This research will lead to more credible empirical findings and hence improve policy-making recommendations. This research tackles a fundamental question in the methodology of economic analyses and makes important contribution to economic science, enhancing US global leadership in economic science. The results of this research project will lead to better methods for policy research, hence enhance economic policy making. The research therefore has the potential to enhance US economic growth because of better policies.This research project focuses on a class of non- or semi-parametric estimators known as smoothed pairwise estimators, as well as generalizations thereof, and seeks to develop new large-sample approximations that produce statistical procedures that are more robust to the specifics of their implementation than existing estimators. These more general distributional approximations for smoothed pairwise estimators explicitly capture the effect of tuning parameter choices, offering improvements over standard results because they encompass findings currently available in the literature while also highlighting new features and problems previously assumed away. The research project has three main parts: (i) generalized distributional approximations for smoothed pairwise estimators, leading to both Gaussian and non-Gaussian limiting distributions, (ii) analytic and bootstrap-based inference methods with demonstrable superior robustness properties, and (iii) valid higher-order expansions showing formally that the proposed generalized distributional approximations and related robust inference methods give demonstrable improvements over existing methods. The results of this research project will lead to better methods for policy research, hence enhance economic policy making. The research therefore has the potential to enhance US economic growth because of better policies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
经济学、公共政策和其他相关学科的研究,以及基于证据的政策制定决策,都需要准确和有效的测量。 有效的测量需要准确、简单和灵活的统计方法,这些方法可以很容易地从数据中得出结论。 这些方法在大数据、高速计算和机器学习的现代时代变得越来越重要。 分析经济问题的新统计方法,包括现代机器学习和类似的数据科学方法,在经济理论中很受欢迎,因为它们通常在测量的灵活性和简单性之间提供了很好的折衷,但它们并不总是可信的,因为结果往往取决于这些方法的实施方式。这项研究将开发新的方法,说明如何在实施中所做的选择影响研究人员获得的结果。 这项研究为分析大型复杂数据集提供了新的现代统计和计量经济学方法。 这些方法将产生不依赖于模型如何实现的具体细节的结果。 这一研究将导致更可信的实证研究结果,从而改进决策建议。 该研究解决了经济分析方法中的一个基本问题,为经济科学做出了重要贡献,增强了美国在经济科学领域的全球领导地位。 本研究的成果将为政策研究提供更好的方法,从而提高经济政策的制定。 因此,该研究有可能通过更好的政策来促进美国经济增长。该研究项目重点关注一类称为平滑成对估计量的非或半参数估计量及其推广,并寻求开发新的大样本近似值,产生比现有估计量更鲁棒的统计程序。这些更一般的分布近似平滑成对估计明确捕捉调整参数选择的影响,提供标准结果的改进,因为它们包括目前在文献中的发现,同时也突出了新的功能和问题,以前假设了。 该研究项目有三个主要部分:(i)平滑成对估计的广义分布近似,导致高斯和非高斯极限分布,(ii)具有可证明的上级鲁棒性的基于分析和引导的推理方法,及(iii)有效的较高者─阶展开形式上表明,所提出的广义分布近似和相关的鲁棒推理方法给出了明显的改进,现有的方法。 本研究的成果将为政策研究提供更好的方法,从而提高经济政策的制定。 该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AVERAGE DENSITY ESTIMATORS: EFFICIENCY AND BOOTSTRAP CONSISTENCY
  • DOI:
    10.1017/s0266466621000530
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    M. D. Cattaneo;Michael Jansson
  • 通讯作者:
    M. D. Cattaneo;Michael Jansson
Coverage error optimal confidence intervals for local polynomial regression
  • DOI:
    10.3150/21-bej1445
  • 发表时间:
    2022-11-01
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Calonico, Sebastian;Cattaneo, Matias D.;Farrell, Max H.
  • 通讯作者:
    Farrell, Max H.
Bootstrap‐Based Inference for Cube Root Asymptotics
基于 Bootstrap 的立方根渐近推理
  • DOI:
    10.3982/ecta17950
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Cattaneo, Matias D.;Jansson, Michael;Nagasawa, Kenichi
  • 通讯作者:
    Nagasawa, Kenichi
lpdensity : Local Polynomial Density Estimation and Inference
lp密度:局部多项式密度估计和推理
  • DOI:
    10.18637/jss.v101.i02
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Cattaneo, Matias D.;Jansson, Michael;Ma, Xinwei
  • 通讯作者:
    Ma, Xinwei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matias Cattaneo其他文献

A Permutation Test and Estimation Alternatives for the Regression Kink Design
回归扭结设计的排列测试和估计替代方案
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alberto Abadie;David Card;Matias Cattaneo;Raj Chetty;Avi Feller;Edward Glaeser;Paul Goldsmith;Guido Imbens;Maximilian Kasy;Larry Katz;Zhuan Pei;Mikkel Plagborg;Guillaume Pouliot
  • 通讯作者:
    Guillaume Pouliot

Matias Cattaneo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matias Cattaneo', 18)}}的其他基金

Partitioning-Based Learning Methods for Treatment Effect Estimation and Inference
基于分区的治疗效果估计和推理学习方法
  • 批准号:
    2241575
  • 财政年份:
    2023
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Standard Grant
Conference: Statistical Foundations of Data Science and their Applications
会议:数据科学的统计基础及其应用
  • 批准号:
    2304646
  • 财政年份:
    2023
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Standard Grant
Nonparametric Estimation and Inference with Network Data
网络数据的非参数估计和推理
  • 批准号:
    2210561
  • 财政年份:
    2022
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Standard Grant
New Developments in Methodology for Program Evaluation
项目评估方法的新进展
  • 批准号:
    2019432
  • 财政年份:
    2020
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Standard Grant
A Random Attention Model: Identification, Estimation and Testing
随机注意力模型:识别、估计和测试
  • 批准号:
    1628883
  • 财政年份:
    2016
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Flexible and Robust Data-driven Inference in Nonparametric and Semiparametric Econometrics
协作研究:非参数和半参数计量经济学中灵活且稳健的数据驱动推理
  • 批准号:
    1459931
  • 财政年份:
    2015
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Standard Grant
New Methodological Developments for Inference in the Regression-Discontinuity Design
回归-不连续性设计中推理的新方法论发展
  • 批准号:
    1357561
  • 财政年份:
    2014
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Standard Asymptotic Theory for Semiparametric Estimators
合作研究:半参数估计的非标准渐近理论
  • 批准号:
    1122994
  • 财政年份:
    2011
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Small Bandwidth Asymptotic Theory for Kernel-Based Semiparametric Estimators
合作研究:基于核的半参数估计器的小带宽渐近理论
  • 批准号:
    0921505
  • 财政年份:
    2009
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
  • 批准号:
    2411394
  • 财政年份:
    2024
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
  • 批准号:
    2235231
  • 财政年份:
    2023
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2327702
  • 财政年份:
    2023
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
  • 批准号:
    2309728
  • 财政年份:
    2023
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
  • 批准号:
    2240448
  • 财政年份:
    2023
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311596
  • 财政年份:
    2023
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311598
  • 财政年份:
    2023
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Continuing Grant
Collaborative Research: Omnidirectional Perching on Dynamic Surfaces: Emergence of Robust Behaviors from Joint Learning of Embodied and Motor Control
合作研究:动态表面上的全方位栖息:从具身控制和运动控制的联合学习中出现鲁棒行为
  • 批准号:
    2230321
  • 财政年份:
    2023
  • 资助金额:
    $ 28.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了