A Comprehensive Observational Examination of the Physical Processes that Link Tropical Cyclone Vortex Alignment to Future Intensity Change
对将热带气旋涡旋排列与未来强度变化联系起来的物理过程进行全面观测检查
基本信息
- 批准号:2241605
- 负责人:
- 金额:$ 54.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The vast societal impacts of rapidly intensifying tropical cyclones, or hurricanes, are exacerbated not only due to poor predictions that create challenges for emergency management decisions, but they also pose a significant threat to coastal populations as these storms quickly become more destructive. Prior to undergoing rapid intensification, which is defined as a quick or sudden increase in the strength of the storm, hurricanes develop from weaker tropical cyclones that initially are more susceptible to detrimental influences from the surrounding environment. A significant environmental influence is vertical wind shear, which is a change in the direction or strength of the wind with increasing height, and can negatively impact the development of hurricanes. Vertical wind shear can cause a displacement of the mid–upper level storm circulation from the low-level circulation. This misalignment of centers allows more unfavorable, dry air in the surrounding environment to enter a storm’s inner core, a deterrent to further intensification. Therefore, previous work strongly supports the notion that a key step for tropical cyclone intensification is achieving an alignment of centers throughout the depth of the atmosphere. However, it is still not well understood how or why some initially misaligned storms transition toward a more vertically-aligned state and rapidly intensify. In some recent, notable U.S. landfalling hurricanes, uncertainty over the processes associated with this structural transition has caused considerable forecast challenges, particularly with intensity change. This project will use a comprehensive radar dataset to provide insights on the processes associated with the alignment of centers prior to and during rapid intensification.Previous observational case studies and idealized modeling simulations have identified multiple pathways through which a misaligned tropical cyclone vortex can transition toward an aligned state. However, it is widely believed that convectively-driven diabatic processes are important in the alignment process, regardless of the pathway. Because all tropical cyclones feature convection to some degree, it is unclear how precisely precipitation structures associated with vortex alignment events differ from storms that remain misaligned. This uncertainty is a key motivator for this study. Furthermore, because these different alignment pathways have only been documented either in idealized modeling systems or in observational case studies of individual storms, robust conclusions as to how precipitation, particularly in weak tropical cyclones, interacts with the surrounding environment and affects the vortex alignment pathway in nature remains ambiguous. Therefore, this project aims to build on previous work by contextualizing the vortex, precipitation, and environmental characteristics associated with a given alignment pathway. The overall goal of this research is to investigate weak tropical cyclones using a novel airborne and ground-based Doppler radar database, which provides the most comprehensive observational database of tropical cyclone structure to date. This assessment of precipitation structure at high resolution will help reveal the three-dimensional structure, from which the physical processes responsible for vortex alignment can be determined.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
迅速增强的热带气旋或飓风的巨大社会影响加剧,这不仅是因为预测不佳,给应急管理决策带来挑战,而且还因为这些风暴迅速变得更具破坏性,对沿海人口构成重大威胁。在经历快速强化(定义为风暴强度的快速或突然增强)之前,飓风是由较弱的热带气旋发展而来的,这些热带气旋最初更容易受到周围环境的不利影响。一个重要的环境影响是垂直风切变,这是风的方向或强度随着高度的增加而变化,并可能对飓风的发展产生负面影响。垂直风切变可使中高层风暴环流从低层环流中位移出来。这种中心的错位使得周围环境中更不利的干燥空气进入风暴的内核,从而阻止风暴进一步增强。因此,以前的工作强烈支持热带气旋强化的关键步骤是在整个大气层深处实现中心对齐的概念。然而,仍然没有很好地理解如何或为什么一些最初错位的风暴过渡到一个更垂直的状态,并迅速加强。在最近一些值得注意的登陆美国的飓风中,与这种结构转变相关的过程的不确定性造成了相当大的预测挑战,特别是强度变化。该项目将使用一个全面的雷达数据集,以提供与快速增强之前和期间的中心对齐相关的过程的见解。以前的观测案例研究和理想化的模式模拟已经确定了多个路径,通过这些路径,一个错位的热带气旋涡旋可以过渡到对齐状态。然而,人们普遍认为,对流驱动的非绝热过程是重要的对齐过程中,无论路径。由于所有的热带气旋都在某种程度上具有对流特征,因此目前还不清楚与涡旋对齐事件相关的降水结构与保持错位的风暴有何不同。这种不确定性是这项研究的关键动机。此外,由于这些不同的对齐路径只记录在理想化的模拟系统或个别风暴的观测案例研究中,关于降水(特别是弱热带气旋)如何与周围环境相互作用并影响自然界中的涡旋对齐路径的可靠结论仍然不明确。因此,该项目旨在通过将与给定对齐路径相关的涡旋、降水和环境特征置于背景中来建立以前的工作。这项研究的总体目标是使用一个新的机载和地基多普勒雷达数据库来研究弱热带气旋,该数据库提供了迄今为止最全面的热带气旋结构观测数据库。这种高分辨率的降水结构评估将有助于揭示三维结构,从而确定造成涡旋排列的物理过程。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Observational Analysis of the Relationship between Tropical Cyclone Vortex Tilt, Precipitation Structure, and Intensity Change
热带气旋涡旋倾斜、降水结构与强度变化关系的观测分析
- DOI:10.1175/mwr-d-23-0089.1
- 发表时间:2024
- 期刊:
- 影响因子:3.2
- 作者:Fischer, Michael S.;Rogers, Robert F.;Reasor, Paul D.;Dunion, Jason P.
- 通讯作者:Dunion, Jason P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Alvey其他文献
George Alvey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Observational and Modeling Investigations of Pulsating Aurora Electrodynamics
职业:脉动极光电动力学的观测和建模研究
- 批准号:
2339961 - 财政年份:2024
- 资助金额:
$ 54.59万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
- 批准号:
2338760 - 财政年份:2024
- 资助金额:
$ 54.59万 - 项目类别:
Continuing Grant
SWIFT-SAT: Observational Data Sharing
SWIFT-SAT:观测数据共享
- 批准号:
2332422 - 财政年份:2024
- 资助金额:
$ 54.59万 - 项目类别:
Standard Grant
Nansen and Amundsen Basins Observational System (NABOS) 2023 Mooring Design and Cruise Support
南森和阿蒙森盆地观测系统 (NABOS) 2023 系泊设计和巡航支持
- 批准号:
2326171 - 财政年份:2023
- 资助金额:
$ 54.59万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: Automated Quality Assurance and Quality Control for the StraboSpot Geologic Information System and Observational Data
合作研究:框架:StraboSpot 地质信息系统和观测数据的自动化质量保证和质量控制
- 批准号:
2311822 - 财政年份:2023
- 资助金额:
$ 54.59万 - 项目类别:
Standard Grant
Observational and Laboratory Studies of the Evolution of Circumstellar Material
星周物质演化的观测和实验室研究
- 批准号:
2307305 - 财政年份:2023
- 资助金额:
$ 54.59万 - 项目类别:
Standard Grant
A Search For Failed Supernovae and Other Observational Constraints on the Supernova Mechanism
寻找失败的超新星和超新星机制的其他观测限制
- 批准号:
2307385 - 财政年份:2023
- 资助金额:
$ 54.59万 - 项目类别:
Standard Grant
An Observational Study to Quantify the Impact of Nearshore Processes on Air-Sea Momentum Transfer
量化近岸过程对海气动量传递影响的观测研究
- 批准号:
2319548 - 财政年份:2023
- 资助金额:
$ 54.59万 - 项目类别:
Standard Grant
Collaborative Research: SHINE: Observational and Theoretical Studies of the Parametric Decay Instability in the Lower Solar Atmosphere
合作研究:SHINE:太阳低层大气参数衰变不稳定性的观测和理论研究
- 批准号:
2229101 - 财政年份:2023
- 资助金额:
$ 54.59万 - 项目类别:
Standard Grant
Leveraging an Existing Longitudinal Observational Cohort to Understand the Impacts of Cannabis Legalization and the COVID-19 Pandemic on Alcohol and Cannabis Use in At-risk Young Adults
利用现有的纵向观察队列来了解大麻合法化和 COVID-19 大流行对高危年轻人酒精和大麻使用的影响
- 批准号:
478397 - 财政年份:2023
- 资助金额:
$ 54.59万 - 项目类别:
Operating Grants