Collaborative Research: SaTC: EDU: Fire and ICE: Raising Security Awareness through Experiential Learning Activities for Building Trustworthy Deep Learning-based Applications
协作研究:SaTC:EDU:火灾和 ICE:通过体验式学习活动提高安全意识,构建值得信赖的基于深度学习的应用程序
基本信息
- 批准号:2244219
- 负责人:
- 金额:$ 23.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In privacy-sensitive and safety-critical applications, deep learning models are increasingly accepted and utilized. This trend is bound to continue: many open-source frameworks and tools from online code repositories are embedded with deep learning modules. However, many deep learning models contain hidden weaknesses that could be exploited by attacks, posing significant risks to user privacy and safety. It is essential, therefore, to raise security awareness among college students, who are the future data engineering practitioners, and equip them with knowledge and strategies for designing trustworthy, deep learning based applications. This project responds to the urgent need in three critical areas: integrity, confidentiality and equity (ICE). A series of easy-to-implement experiential learning activities concretize learners’ awareness of potential vulnerabilities in deep learning models and enhance their ability to build secure applications of their own. These activities are expressly designed for learners with little prior knowledge, and are streamlined to reduce preparation time and cost for the instructor. The activities’ flexibility maximizes the equitable dissemination of relevant knowledge that is critical to society. The investigators are especially mindful of the needs of minority and socio-economically disadvantaged student populations.A total of twelve learning activity sets address a wide array of issues arising in ICE areas. For data integrity, threats posed by adversarial examples, data poisoning, and backdoor hidden features are tackled. The emphasis on experiential learning allows learners to become acquainted with the process and effects of attacks before learners are equipped with strategies and trained to implement proper defense. To enhance confidentiality, learners first encounter at least two potential sources of privacy leakage, dataset overfitting and abusive querying, and are then taught preventative countermeasures. Both sample biases and algorithmic biases in deep learning models are addressed in the learning activities. Artificial intelligence and deep learning constitute a fast-developing field, and educators must keep pace. The project enriches the supply of educational tools by introducing recent discoveries in the field, including those made by the investigators themselves.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在隐私敏感和安全关键型应用中,深度学习模型越来越多地被接受和使用。这一趋势必将持续下去:许多来自在线代码库的开源框架和工具都嵌入了深度学习模块。然而,许多深度学习模型都包含隐藏的弱点,可能被攻击利用,对用户隐私和安全构成重大风险。因此,必须提高大学生的安全意识,他们是未来的数据工程从业者,并为他们提供设计值得信赖的基于深度学习的应用程序的知识和策略。该项目回应了三个关键领域的迫切需要:诚信、保密和公平(ICE)。一系列易于实施的体验式学习活动具体化了学习者对深度学习模型中潜在漏洞的认识,并增强了他们构建自己安全应用程序的能力。这些活动是专为学习者很少的先验知识,并简化,以减少准备时间和成本的讲师。这些活动的灵活性最大限度地公平传播了对社会至关重要的相关知识。调查人员特别注意少数民族和社会经济弱势学生群体的需求。共有12个学习活动集解决了ICE领域出现的各种问题。对于数据完整性,解决了对抗性示例、数据中毒和后门隐藏功能带来的威胁。对体验式学习的强调使学习者在学习者配备策略并接受培训以实施适当防御之前熟悉攻击的过程和效果。为了提高保密性,学习者首先会遇到至少两个潜在的隐私泄露源,数据集过拟合和滥用查询,然后教预防对策。深度学习模型中的样本偏差和算法偏差都在学习活动中得到解决。人工智能和深度学习是一个快速发展的领域,教育工作者必须跟上步伐。该项目通过介绍该领域的最新发现,包括研究人员自己的发现,丰富了教育工具的供应。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhipeng Cai其他文献
Editorial, COCOON 2007 special issue
社论,COCOON 2007 特刊
- DOI:
10.1007/s10878-008-9167-8 - 发表时间:
2008 - 期刊:
- 影响因子:1
- 作者:
Guohui Lin;Zhipeng Cai - 通讯作者:
Zhipeng Cai
Linear Coherent Bi-cluster Discovery via Beam Detection and Sample Set Clustering
通过光束检测和样本集聚类进行线性相干双聚类发现
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Yi Shi;Maryam Hasan;Zhipeng Cai;Guohui Lin;Dale Schuurmans - 通讯作者:
Dale Schuurmans
Customized privacy preserving for inherent data and latent data
固有数据和潜在数据的定制隐私保护
- DOI:
10.1007/s00779-016-0972-2 - 发表时间:
2017-02 - 期刊:
- 影响因子:0
- 作者:
Zaobo He;Zhipeng Cai;Yunchuan Sun - 通讯作者:
Yunchuan Sun
On the Complexity of Extracting Subtree with Keeping Distinguishability
保持可区分性提取子树的复杂度研究
- DOI:
10.1007/978-3-319-48749-6_17 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Xianmin Liu;Zhipeng Cai;Dongjing Miao;Jianzhong Li - 通讯作者:
Jianzhong Li
Faster Parallel Core Maintenance Algorithms in Dynamic Graphs
- DOI:
no. 10.1109/TPDS.2019.2960226 - 发表时间:
- 期刊:
- 影响因子:
- 作者:
Qiang-Sheng Hua;Yuliang Shi;Dongxiao Yu;Hai Jin;Jiguo Yu;Zhipeng Cai;Xiuzheng Cheng;Hanhua Chen - 通讯作者:
Hanhua Chen
Zhipeng Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhipeng Cai', 18)}}的其他基金
SaTC: EDU: Collaborative: Advancing Cybersecurity Learning Through Inquiry-based Laboratories on a Container-based Virtualization Platform
SaTC:EDU:协作:通过基于容器的虚拟化平台上的探究实验室推进网络安全学习
- 批准号:
1912753 - 财政年份:2019
- 资助金额:
$ 23.53万 - 项目类别:
Standard Grant
CyberTraining: CIP: Collaborative Research: Enhancing Mobile Security Education by Creating Eureka Experiences
网络培训:CIP:协作研究:通过创建 Eureka 体验加强移动安全教育
- 批准号:
1829674 - 财政年份:2018
- 资助金额:
$ 23.53万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: Collaborative: Privacy Attacks and Defense Mechanisms in Online Social Networks
SaTC:核心:媒介:协作:在线社交网络中的隐私攻击和防御机制
- 批准号:
1704287 - 财政年份:2017
- 资助金额:
$ 23.53万 - 项目类别:
Standard Grant
CAREER: Routing in Cognitive Radio Networks Considering Activities of Primary Users
职业:考虑主要用户活动的认知无线电网络中的路由
- 批准号:
1252292 - 财政年份:2013
- 资助金额:
$ 23.53万 - 项目类别:
Continuing Grant
EAGER: One-off/Continuous Convergecast and Broadcast Scheduling in Probabilistic Wireless Mesh Networks
EAGER:概率无线网状网络中的一次性/连续融合广播和广播调度
- 批准号:
1152001 - 财政年份:2011
- 资助金额:
$ 23.53万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 23.53万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 23.53万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 23.53万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 23.53万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 23.53万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 23.53万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 23.53万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
- 批准号:
2312057 - 财政年份:2023
- 资助金额:
$ 23.53万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
- 批准号:
2317830 - 财政年份:2023
- 资助金额:
$ 23.53万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318843 - 财政年份:2023
- 资助金额:
$ 23.53万 - 项目类别:
Continuing Grant