Toeplitz Order and Spectral Problems

托普利兹阶和谱问题

基本信息

  • 批准号:
    1665264
  • 负责人:
  • 金额:
    $ 18.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

This project is related to the area of the Uncertainty Principle (UP) in Harmonic Analysis. Briefly, this principle says the sets where a function and its Fourier transform are non-zero cannot be simultaneously small. Stemming from the work of Norbert Wiener in mathematics and Werner Heisenberg in physics, the area of UP still presents many mathematical challenges. Its problems have a number of applications in adjacent fields. Several classical problems of UP, posed decades ago by such prominent mathematicians as Norman Levinson, Andrei Kolmogorov and Norbert Wiener, remain open. Some of such problems are studied in this project. Modern methods of Complex and Harmonic Analysis that appeared in the last 30 years suggest new approaches to the classical challenges of UP. These problems have a number of important applications in Approximation Theory, Prediction Theory, Spectral Theory of differential operators and Mathematical Physics. Among the proposed topics of research are generalizations of the so-called Gap and Type problems in Harmonic Analysis, an extension of the well-known Gelfand-Levitan theory in the area of spectral problems for differential operators and connections between Krein's canonical systems of differential equations and asymptotics of the Riemann zeta-function. Successful completion of this step of the project will create a systematic view of the large variety of problems in the area of UP based on the new notion of Toeplitz Order discussed in the proposal. The study of Toeplitz Order is a continuation of the study of the so-called Toeplitz approach to UP developed in recent papers of Nikolai Makarov (Caltech) and the principal investigator. The next stage of the applications of the Toeplitz approach contains several classical open problems of Harmonic Analysis and Spectral Theory, including general completeness problems, spectral problems for Schroedinger and Dirac operators and a Toeplitz operator version of the so-called Krein - de Branges theory, which was designed to connect Complex and Spectral Analysis. Among other applications, the project includes a problem on Uncertainty Quantification in the settings of spectral problems for Schroedinger opearators and canonical systems of differential equations.
这个项目与谐波分析中的不确定性原理(UP)有关。简单地说,这个原则说,一个函数及其傅里叶变换不为零的集合不能同时很小。从诺伯特·维纳在数学和维尔纳·海森堡在物理学的工作中,UP领域仍然存在许多数学挑战。它的问题在邻近领域有许多应用。几十年前,著名数学家诺曼·莱文森(Norman Levinson)、安德烈·柯尔莫哥洛夫(Andrei Kolmogorov)和诺伯特·维纳(Norbert Wiener)提出了UP的几个经典问题,这些问题至今仍未解决。本项目对其中的一些问题进行了研究。在过去的30年中出现的复杂和谐波分析的现代方法提出了新的方法来应对UP的经典挑战。这些问题在逼近理论、预测理论、微分算子谱理论和数学物理中有许多重要的应用。 在拟议的研究课题是概括的所谓差距和类型问题的调和分析,一个扩展的著名Gelfand-Levitan理论领域的谱问题的微分算子和连接之间的克莱因的典型系统的微分方程和渐近的黎曼zeta函数。成功完成项目的这一步将创建一个系统的观点,在UP领域的各种问题的基础上,在提案中讨论的Toeplitz秩序的新概念。Toeplitz顺序的研究是在Nikolai Makarov(Caltech)和主要研究者最近的论文中开发的所谓Toeplitz方法的研究的延续。下一阶段的应用程序的Toeplitz方法包含几个经典的开放问题的调和分析和频谱理论,包括一般的完整性问题,频谱问题的薛定谔和狄拉克运营商和Toeplitz运营商版本的所谓克莱因-德布兰日理论,这是旨在连接复杂和频谱分析。 在其他应用程序中,该项目包括一个关于薛定谔算子和微分方程正则系统的谱问题设置中的不确定性量化问题。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Type alternative for Frostman measures
Frostman 措施的替代类型
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Poltoratski, A
  • 通讯作者:
    Poltoratski, A
Two-Spectra Theorem with Uncertainty
具有不确定性的双谱定理
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Makarov, N;Poltoratski, A
  • 通讯作者:
    Poltoratski, A
Toeplitz Order
托普利茨秩序
Toeplitz methods in completeness and spectral problems
完整性和谱问题中的托普利茨方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexei Poltoratski其他文献

On the determinacy problem for measures
  • DOI:
    10.1007/s00222-015-0588-6
  • 发表时间:
    2015-03-14
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Mishko Mitkovski;Alexei Poltoratski
  • 通讯作者:
    Alexei Poltoratski
The Hilbert transform of a measure
  • DOI:
    10.1007/s11854-010-0017-0
  • 发表时间:
    2010-12-19
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Alexei Poltoratski;Barry Simon;Maxim Zinchenko
  • 通讯作者:
    Maxim Zinchenko

Alexei Poltoratski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexei Poltoratski', 18)}}的其他基金

Complex Methods in Spectral and Scattering Problems
光谱和散射问题的复杂方法
  • 批准号:
    2244801
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Inner Functions, Spectra, and Scattering
内部函数、光谱和散射
  • 批准号:
    1954085
  • 财政年份:
    2020
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Toeplitz approach to the Uncertainty Principle
不确定性原理的托普利茨方法
  • 批准号:
    1362450
  • 财政年份:
    2014
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Completeness Problems in Harmonic Analysis and Spectral Theory
调和分析和谱理论中的完备性问题
  • 批准号:
    1101278
  • 财政年份:
    2011
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Waves and Spectra: Analysis/PDE Conference.
波和谱:分析/偏微分方程会议。
  • 批准号:
    1101551
  • 财政年份:
    2011
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Uniqueness and Convergence of Analytic Integrals in Harmonic and Spectral Analysis
调和与谱分析中解析积分的唯一性和收敛性
  • 批准号:
    0800300
  • 财政年份:
    2008
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Asymptotics of Analytic Integrals and the Beurling-Malliavin Theory
解析积分的渐进性和 Beurling-Malliavin 理论
  • 批准号:
    0500852
  • 财政年份:
    2005
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Boundary Behavior of Analytic Functions
解析函数的边界行为
  • 批准号:
    0200699
  • 财政年份:
    2002
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Asymptotic Behavior of Cauchy-Stieltjes Type Integrals of Singular Measures
奇异测度的柯西-斯蒂尔切斯型积分的渐近行为
  • 批准号:
    9970151
  • 财政年份:
    1999
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Order的SIS/LWE变体问题及其应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
Poisson Order, Morita 理论,群作用及相关课题
  • 批准号:
    19ZR1434600
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Least Squares PGD Mimetic Spectral Element Methods for Systems of First-Order PDEs
一阶偏微分方程组的最小二乘 PGD 模拟谱元方法
  • 批准号:
    2316393
  • 财政年份:
    2021
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Studentship
Rapid and Robust High Order Spectral Solvers for Learning Photonic Structures
用于学习光子结构的快速、鲁棒的高阶谱求解器
  • 批准号:
    2111283
  • 财政年份:
    2021
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Signal Recognition Mechanisms by Selecting Higher-Order Spectral Features Through Learning
通过学习选择高阶光谱特征的信号识别机制
  • 批准号:
    16K00322
  • 财政年份:
    2016
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-dimensional multi-level mode modulation with ultra-high spectral efficiency using higher order degenerate modes in optical fiber
利用光纤中高阶简并模式进行具有超高频谱效率的多维多级模式调制
  • 批准号:
    16K14264
  • 财政年份:
    2016
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
International Conference on Spectral and High Order Methods 2014
2014 年光谱和高阶方法国际会议
  • 批准号:
    1341263
  • 财政年份:
    2014
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Time-spectral method for unsteady viscous flow on moving and deformable grids with the high-order spectral difference method
高阶谱差法求解移动变形网格上非定常粘性流的时间谱法
  • 批准号:
    389253-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Asymptoic theory of the spectral functions of one-dimensional second order differential operators and its applications to diffusion processes
一维二阶微分算子谱函数的渐近理论及其在扩散过程中的应用
  • 批准号:
    24540110
  • 财政年份:
    2012
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Time-spectral method for unsteady viscous flow on moving and deformable grids with the high-order spectral difference method
高阶谱差法求解移动变形网格上非定常粘性流的时间谱法
  • 批准号:
    389253-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Time-spectral method for unsteady viscous flow on moving and deformable grids with the high-order spectral difference method
高阶谱差法求解移动变形网格上非定常粘性流的时间谱法
  • 批准号:
    389253-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Time-Spectral Method for Unsteady Viscous Flow on Moving and Deformable Grids with the High-order Spectral Difference Method
高阶谱差法求解移动变形网格上非定常粘性流的时谱法
  • 批准号:
    0915006
  • 财政年份:
    2009
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了