CRII: CNS: System for Deploying Ultra Low-Latency Machine Learning Applications on Programmable Networks
CRII:CNS:在可编程网络上部署超低延迟机器学习应用程序的系统
基本信息
- 批准号:2245352
- 负责人:
- 金额:$ 17.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many modern applications, such as self-driving, security-threat detection, and image recognition rely on machine learning (ML) models, which are statistical models built using large amounts of data to automatically achieve solutions for a set of complex problems. ML models are often very complex, thus they often require very powerful computing hardware and large amounts of time, often taking minutes, to arrive at a solution. However, modern applications including those mentioned above require decisions to be made in milliseconds to be able to react to the changes in the environment. Therefore, a major challenge in machine learning is to develop methods and computer systems that allow ML models to be able to provide solutions to complex problems very quickly, while minimizing the amount of hardware that the models need. Solving such a challenge will not only increase the feasibility of using complex ML models for modern applications, but also, for example, provide potential improvements for defense systems that improve our national security. Furthermore, this research directly feeds into the development of new computer systems courses and provides opportunities for a number of undergraduates—many for the first time—to participate in research.This project focuses on solving the challenges in providing significant reduction in time—defined as latency—to provide solutions for applications that use ML models. An approach that will be explored by this project is for models that traditionally are run on a central processing unit (CPU) or a graphics processing unit (GPU) to run on a domain-specific architecture (DSA) called a network processing unit (NPU). NPUs are computational hardware that exist in networking devices, such as network interface cards (NICs), and act as the gateway to data that enters and leaves a computer. The main motivation for using NPUs is to mitigate the overhead of passing data to CPUs or GPUs, thereby reducing the latency, CPU cycles and memory spent on processing the data, while providing performance guarantees that come with the reduced need for context switching. The set of challenges for this approach are: (1) determining the types of ML applications that are feasible to be offloaded onto NPUs with measurable improvements; (2) programming and deploying applications on NPUs in an efficient and scalable manner; and (3) guaranteeing predictable performance with existing traffic. This project will focus on developing methods and a system for deploying ML applications on to NPUs and quantifying their benefits, focusing on existing, simpler ML models, such as decision trees and logistic regression, to show feasibility of its approach and to obtain preliminary metrics on performance improvements. The entire work will be released as open-source, reusable libraries, and applications for use by other researchers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多现代应用,如自动驾驶、安全威胁检测和图像识别,都依赖于机器学习(ML)模型,这些模型是使用大量数据构建的统计模型,可以自动获得一组复杂问题的解决方案。ML模型通常非常复杂,因此它们通常需要非常强大的计算硬件和大量的时间,通常需要几分钟才能得出解决方案。然而,现代应用程序,包括上面提到的那些,需要在毫秒内做出决定,以便能够对环境中的变化做出反应。因此,机器学习中的一个主要挑战是开发方法和计算机系统,使ML模型能够非常快速地提供复杂问题的解决方案,同时将模型所需的硬件数量降至最低。解决这样的挑战不仅将增加将复杂的ML模型用于现代应用的可行性,而且例如,还将为改善我们国家安全的国防系统提供潜在的改进。此外,这项研究直接为新计算机系统课程的开发提供了机会,并为许多本科生提供了参与研究的机会。该项目专注于解决在显著减少时间(定义为延迟)方面的挑战,为使用ML模型的应用程序提供解决方案。本项目将探索的一种方法是让传统上在中央处理单元(CPU)或图形处理单元(GPU)上运行的模型在称为网络处理单元(NPU)的域特定体系结构(DSA)上运行。NPU是存在于网络设备(如网络接口卡(NIC))中的计算硬件,充当进出计算机的数据的网关。使用NPU的主要动机是减少将数据传递到CPU或GPU的开销,从而减少处理数据所花费的延迟、CPU周期和内存,同时提供减少的环境切换需求带来的性能保证。这种方法面临的一系列挑战是:(1)确定哪些类型的ML应用程序可以通过可测量的改进卸载到NPU上;(2)以高效和可扩展的方式在NPU上编程和部署应用程序;以及(3)保证现有流量的可预测性能。该项目将侧重于开发在NPU上部署ML应用程序并量化其效益的方法和系统,重点是现有的、更简单的ML模型,如决策树和逻辑回归,以显示其方法的可行性,并获得性能改进的初步衡量标准。整个工作将以开源、可重复使用的库和应用程序的形式发布,供其他研究人员使用。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Choi其他文献
SmartNIC-Powered Multi-threaded Proof of Work
SmartNIC 支持的多线程工作证明
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Disha Patel;Sean Choi - 通讯作者:
Sean Choi
AN ALGORITHM TO REDUCE UNNECESSARY ECHOCARDIOGRAMS: VALIDATION AND INSIGHTS FROM THE LARGEST REGISTRY OF NHPI PATIENTS WITH SYNCOPE
一种减少不必要超声心动图检查的算法:来自最大的非持续性室性心动过速患者晕厥注册研究的验证和见解
- DOI:
10.1016/s0735-1097(25)01186-6 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:22.300
- 作者:
Kevin Benavente;bradley fujiuchi;Samantha Wong;Sean Choi;Narathorn Kulthamrongsri;Benita Tjoe;Michael Tanoue - 通讯作者:
Michael Tanoue
λ-NIC: Interactive Serverless Compute on SmartNICs
λ-NIC:SmartNIC 上的交互式无服务器计算
- DOI:
10.1145/3342280.3342341 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Sean Choi;M. Shahbaz;B. Prabhakar;M. Rosenblum - 通讯作者:
M. Rosenblum
Analysis of Plagiarism via ChatGPT on Domain-Specific Exams
通过 ChatGPT 分析特定领域考试中的抄袭行为
- DOI:
10.1109/csce60160.2023.00171 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jinyoung Jo;Sean Choi - 通讯作者:
Sean Choi
388. Amygdala Subnuclei Volumes in Early Psychosis
- DOI:
10.1016/j.biopsych.2024.02.887 - 发表时间:
2024-05-15 - 期刊:
- 影响因子:
- 作者:
Niels Janssen;Karin Yoshida;Yi-Kuan Li;Sean Choi;Matthew Rosborough;Uriel Elvira;Theo van Erp - 通讯作者:
Theo van Erp
Sean Choi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
IL-17A通过STAT5影响CNS2区域甲基化抑制调节性T细胞功能在银屑病发病中的作用和机制研究
- 批准号:82304006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血浆CNS来源外泌体中寡聚磷酸化α-synuclein对PD病程的提示研究
- 批准号:82101506
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于脑微血管内皮细胞模型的毒力岛4在单增李斯特菌CNS炎症中的作用及机制研究
- 批准号:32160834
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
胱硫醚-β-合成酶介导小胶质细胞极化致糖皮质激素CNS毒性作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物工程化微泡干扰MAPK通路重编程CNS微环境起始脑胶质瘤免疫检查点抑制剂的应答研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
百合中“桉树脑盒”挥发物生物合成关键酶基因CNS的功能解析
- 批准号:32002082
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
大气细颗粒物通过NF-κB/LBP-9信号通路诱导小胶质细胞激活加剧CNS脱髓鞘损伤的作用机制研究
- 批准号:82071396
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
新型化合物组合抑制STAT6维持Foxp3-CNS2去甲基化产生稳定的iTreg细胞诱导小鼠肾移植免疫耐受的机制研究
- 批准号:82070773
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
基于菌群-肠-脑轴探讨柚皮素改善CNS髓鞘脱失的机制研究
- 批准号:
- 批准年份:2020
- 资助金额:50 万元
- 项目类别:
相似海外基金
CISE-MSI: DP: CNS: AI-powered Diagnosis Augmented by Self-sustaining Sensing System for Intelligent Wastewater Infrastructure Management
CISE-MSI:DP:CNS:通过自我维持传感系统增强人工智能诊断,实现智能废水基础设施管理
- 批准号:
2318641 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
- 批准号:
2318573 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
- 批准号:
2318574 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: CNS: Multi-Modal User-Centric Mobility Scooter Driving Safety Assessment System
合作研究:CISE-MSI:DP:CNS:多模式以用户为中心的代步车驾驶安全评估系统
- 批准号:
2318672 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
CNS Core: Medium: Privacy-Preserving and Censorship-Resistant Domain Name System
CNS 核心:中:隐私保护和抗审查域名系统
- 批准号:
2310927 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: CNS: Multi-Modal User-Centric Mobility Scooter Driving Safety Assessment System
合作研究:CISE-MSI:DP:CNS:多模式以用户为中心的代步车驾驶安全评估系统
- 批准号:
2318671 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
CRII: CNS: OCEAN: A Once-for-All Edge Collaboration System for Medical Imaging
CRII:CNS:OCEAN:一劳永逸的医学成像边缘协作系统
- 批准号:
2245729 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230944 - 财政年份:2023
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant