CRII: SHF: IMMENSE: In-Memory Machine Learning using Sneak-Paths in Crossbars for Robustness and Energy Efficiency

CRII:SHF:IMMENSE:使用交叉开关中的潜行路径实现稳健性和能源效率的内存中机器学习

基本信息

  • 批准号:
    2245756
  • 负责人:
  • 金额:
    $ 17.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

The demise of both Moore's law and Dennard scaling has led to a slowdown in the rate of improvement in energy efficiency that is being experienced today. This slowdown and the von Neumann bottleneck adversely affect a data-rich and machine learning (ML) dominated future. In-memory computing using memristor crossbars has emerged as an attractive choice as it is likely to be more energy-efficient than traditional approaches and does not suffer from the von Neumann bottleneck. However, existing in-memory memristor-dependent methods, such as neuromorphic computing, suffer from resistance drift leading to inaccurate output and high energy utilization, and are not robust against radiation damage. This project seeks to pursue a new approach to crossbar computing that transcends current neuromorphic approaches and counterintuitively leverages sneak paths in 3-D crossbars of emerging devices for performing computations. The societal impact of energy-efficient and radiation-hardened machine learning devices enabled by this project will be enormous. The low energy requirements of flow-based memristor crossbar computing will enable the goal of energy-efficient ML systems. Since these devices are robust against radiation damage, they will allow their use in radiation-rich environments such as space. The project seeks to train undergraduate and graduate students in the science of flow-based crossbar computing and prepare an inclusive next-generation workforce in the area of electronic design automation. The results of the project will be publicly disseminated at conferences and workshops to ensure a wide reach to stakeholders in academia, government, and industry.The project aims to answer the following question: How to design in-memory crossbar circuits for machine learning algorithms such as support vector machines and deep neural networks for energy-efficient predictions while being robust against resistance drift and radiation degradation. The goal of this project is to create algorithms for mapping programs to 3-D crossbars and their theoretical characterizations that explain the computing capacity of crossbars in the context of data structures, such as different types of decision diagrams used in formal methods. The three primary objectives are as follows (i) identify bipartite data structures as transformation targets for non-kernel ML algorithms such as random forest, linear and logistic regression, (ii) determine novel spatial abstractions of memristor crossbar to allow efficient memristor utilization for lower energy and space utilization, and (iii) identify function composition operators for crossbar abstractions to enable mapping kernelized ML algorithms onto crossbars.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
摩尔定律和Dennard标度的消亡都导致了当今能源效率提高的速度放缓。这种放缓和冯·诺伊曼的瓶颈对数据丰富、机器学习(ML)占主导地位的未来产生了不利影响。使用忆阻器交叉开关的内存计算已经成为一个有吸引力的选择,因为它可能比传统方法更节能,而且不会受到冯·诺伊曼瓶颈的影响。然而,现有的记忆记忆阻器依赖的方法,如神经形态计算,存在着电阻漂移导致输出不准确和能量利用率高的问题,并且不能很好地抵抗辐射损伤。这个项目试图寻求一种新的交叉开关计算方法,这种方法超越了目前的神经形态方法,并反直觉地利用新兴设备的3-D交叉开关中的偷偷路径来执行计算。该项目实现的节能和防辐射机器学习设备的社会影响将是巨大的。基于流量的忆阻器交叉开关计算的低能量需求将使节能ML系统的目标成为可能。由于这些设备对辐射损害具有很强的抵抗力,它们将允许在太空等辐射丰富的环境中使用。该项目旨在培训基于流量的纵横制计算科学方面的本科生和研究生,并在电子设计自动化领域培养一支包容各方的下一代劳动力队伍。该项目的结果将在会议和研讨会上公开传播,以确保学术界、政府和工业利益相关者的广泛接触。该项目旨在回答以下问题:如何为机器学习算法(如支持向量机和深度神经网络)设计内存交叉开关电路,以实现节能预测,同时对抵抗漂移和辐射退化具有健壮性。这个项目的目标是创建将程序映射到3-D Crosbar及其理论特征的算法,以在数据结构的背景下解释Crosbar的计算能力,例如形式方法中使用的不同类型的决策图。三个主要目标如下:(I)确定二分数据结构作为非核心ML算法的转换目标,例如随机森林、线性和Logistic回归;(Ii)确定新的忆阻器纵横杆的空间抽象,以实现更低的能量和空间利用率;以及(Iii)确定用于纵横杆抽象的函数组合运算符,以便能够将核化的ML算法映射到纵横杆上。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sunny Raj其他文献

Towards AI-driven Predictive Modeling of Gas Turbines Using Big Data
使用大数据进行人工智能驱动的燃气轮机预测建模
  • DOI:
    10.2514/6.2019-4385
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sunny Raj;S. Fernandes;A. Michel;Sumit Kumar Jha
  • 通讯作者:
    Sumit Kumar Jha
Adversarial attacks on computer vision algorithms using natural perturbations
使用自然扰动对计算机视觉算法进行对抗性攻击
  • DOI:
    10.1109/ic3.2017.8284294
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Ramanathan;L. Pullum;Zubir Husein;Sunny Raj;N. Torosdagli;S. Pattanaik;Sumit Kumar Jha
  • 通讯作者:
    Sumit Kumar Jha
In-memory Machine Learning using Adaptive Multivariate Decision Trees and Memristors
使用自适应多元决策树和忆阻器的内存机器学习
Towards Robust Artificial Intelligence Systems
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sunny Raj
  • 通讯作者:
    Sunny Raj
Data-driven Approximate Edge Detection using Flow-based Computing on Memristor Crossbars
在忆阻器交叉开关上使用基于流的计算进行数据驱动的近似边缘检测

Sunny Raj的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

天然超短抗菌肽Temporin-SHf衍生多肽的构效分析与抗菌机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EGFR/GRβ/Shf调控环路在胶质瘤中的作用机制研究
  • 批准号:
    81572468
  • 批准年份:
    2015
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
  • 批准号:
    2400014
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
SHF: SMALL: A New Semantics for Type-Level Programming in Haskell
SHF:SMALL:Haskell 中类型级编程的新语义
  • 批准号:
    2345580
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
  • 批准号:
    2332891
  • 财政年份:
    2024
  • 资助金额:
    $ 17.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了