CRII:SCH:Self-Supervised Contrastive Representation Learning for Medical Time Series
CRII:SCH:医学时间序列的自监督对比表示学习
基本信息
- 批准号:2245894
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Medical time series data includes an individual's medical data that are collected over a period of time. The data can include a variety of physiological information, such as brain activity, heart rate, and/or blood pressure. By analyzing medical time series data, researchers and healthcare providers can gain a better understanding of how a patient's health is changing and make predictions about future outcomes. Artificial intelligence (AI) models can be very helpful in uncovering insights from medical data and understanding the progression of a disease. However, using AI techniques can require a large number of high-quality professional annotations (notes by healthcare providers), which can be costly and hard to obtain. For example, while devices in intensive care units can continuously monitor vital signs, physicians may only have the time to review and annotate a small portion of the data to note important events. Moreover, the annotations may not be reliable because doctors may have different opinions patients or events. To this end, this project will build innovative technologies to provide insightful understanding of a patient’s health with minimal expert input. Overall, this project aims to promote the development of smart healthcare, relieve the burden on physicians, and enhance the quality of life.This project will develop a novel self-supervised contrastive framework to learn representations from medical time series data. Specifically, the project will focus on the following tasks: (1) developing a frequency-aware contrastive framework for unimodal time series data, which leverages the cohesion between time-based and frequency-based representations of the same sample; (2) applying the established framework to analyze Electroencephalography (EEG) signals for the diagnosis of Alzheimer's Disease (AD); (3) extending the framework to multimodal medical time series data by constructing a medical graph that models the dependencies among diverse medical entities and integrates representations through graph message passing; and (4) applying the resulting model to predict clinical outcomes using multimodal vital signals, with a focus on improving interpretability through the learned graph attention weights. The investigator will disseminate the benefits of self-supervised methods to the medical community, and organize special issues and workshops to promote research in weakly-supervised methods for healthcare. This project, thereby, will further lay the groundwork for augmenting the medical system with advanced AI models, and reduce the burden on physicians by accelerating the decision-making process. For education in the interdisciplinary area of AI and healthcare, this project will deliver pioneering knowledge to students while providing real-world case studies and practical materials to young scientists.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
医疗时间序列数据包括在一段时间内收集的个体的医疗数据。数据可以包括各种生理信息,诸如大脑活动、心率和/或血压。通过分析医疗时间序列数据,研究人员和医疗保健提供者可以更好地了解患者的健康状况如何变化,并对未来的结果进行预测。人工智能(AI)模型可以非常有助于从医疗数据中发现见解并了解疾病的进展。然而,使用人工智能技术可能需要大量高质量的专业注释(医疗保健提供者的注释),这可能是昂贵的,难以获得。例如,虽然重症监护室中的设备可以连续监测生命体征,但医生可能只有时间查看和注释一小部分数据以记录重要事件。此外,注释可能不可靠,因为医生可能对患者或事件有不同的意见。为此,该项目将建立创新技术,以最少的专家投入提供对患者健康的深入了解。总的来说,本项目旨在促进智能医疗的发展,减轻医生的负担,提高生活质量。本项目将开发一种新的自监督对比框架,从医疗时间序列数据中学习表示。具体而言,该项目将集中于以下任务:(1)开发单峰时间序列数据的频率感知对比框架,该框架利用同一样本的基于时间和基于频率的表示之间的内聚性;(2)将建立的框架应用于分析脑电(EEG)信号以诊断阿尔茨海默病(AD);(3)通过构建医学图来将框架扩展到多模态医学时间序列数据,所述医学图对不同医学实体之间的依赖性进行建模并且通过图消息传递来集成表示;以及(4)应用所得到的模型以使用多模态生命信号来预测临床结果,重点在于通过学习的图形注意力权重来提高可解释性。研究者将向医学界宣传自我监督方法的好处,并组织特别问题和研讨会,以促进对弱监督方法的研究。因此,该项目将进一步为使用先进的人工智能模型增强医疗系统奠定基础,并通过加速决策过程来减轻医生的负担。在人工智能和医疗保健的跨学科教育领域,该项目将向学生提供开创性的知识,同时向年轻科学家提供真实世界的案例研究和实用材料。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiang Zhang其他文献
Optical Silver Superlens Imaging Below the Diffraction Limit
低于衍射极限的光学银超级透镜成像
- DOI:
10.1557/proc-0919-j04-01 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
H. J. Lee;Y. Xiong;N. Fang;W. Srituravanich;S. Durant;M. Ambati;Cheng Sun;Xiang Zhang - 通讯作者:
Xiang Zhang
Electronic Effect of Fluoro Substituents on Chromium(III) Complexes bearing beta;-Diketiminate Ligands for Ethylene Polymerization
氟取代基对铬(III)配合物轴承的电子效应
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Xiang Zhang;Xiaohang Xu;Tingcheng Li;Aiqing Zhang - 通讯作者:
Aiqing Zhang
Comporation of The Biosynthetic Pathway of 10-Hydroxy-2-Decenoic Acid between Microorganisms and Apis mellifera
微生物与意大利蜜蜂10-羟基-2-癸烯酸生物合成途径的比较
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0.8
- 作者:
Tengfei Wang;Xiang Zhang;Piwu Li - 通讯作者:
Piwu Li
Expeditious and scalable preparation of a Li−Thiele reagent for amine-based bioconjugation
快速且可扩展地制备用于胺基生物共轭的 LiâThiele 试剂
- DOI:
10.1016/j.cclet.2020.06.019 - 发表时间:
2020-06 - 期刊:
- 影响因子:9.1
- 作者:
Jiacheng Li;Yuyong Ma;Xiang Zhang;Xin Cao;Hegui Gong;Ang Li - 通讯作者:
Ang Li
Targeted shRNA-loaded liposome complex combined with ultrasound for blood brain barrier disruption and suppressing glioma growth。
装载靶向 shRNA 的脂质体复合物与超声波相结合,可破坏血脑屏障并抑制神经胶质瘤生长。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Guanjian Zhao;Qin Huang;Feng Wang;Xiang Zhang;Jiangang Hu;Ying Tan;Ning Huang;Zhibiao Wang;Zhigang Wang;Yuan Cheng - 通讯作者:
Yuan Cheng
Xiang Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiang Zhang', 18)}}的其他基金
CAREER: Multiscale Reduced Order Modeling and Design to Elucidate the Microstructure-Property-Performance Relationship of Hybrid Composite Materials
职业:通过多尺度降阶建模和设计来阐明混合复合材料的微观结构-性能-性能关系
- 批准号:
2341000 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Multiscale Reduced-Order Modeling and Experimental Framework for Lithium-ion Batteries under Mechanical Abuse Conditions
协作研究:机械滥用条件下锂离子电池的集成多尺度降阶建模和实验框架
- 批准号:
2114822 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
EAGER: Advancing High-Efficiency Nanoscale Antiferromagnetic Spintronics with Two-Dimensional Half Metals
EAGER:利用二维半金属推进高效纳米级反铁磁自旋电子学
- 批准号:
1753380 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
MRI: Acquisition of a Low-Vibration, Cryogen-Free Cryostat Microscope System
MRI:获取低振动、无冷冻剂的低温恒温器显微镜系统
- 批准号:
1725335 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CAREER: Novel Approaches for Mining Large and Complex Networks
职业:挖掘大型复杂网络的新方法
- 批准号:
1707548 - 财政年份:2016
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CAREER: Novel Approaches for Mining Large and Complex Networks
职业:挖掘大型复杂网络的新方法
- 批准号:
1552915 - 财政年份:2016
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: Toward Robust and Scalable Discovering of Significant Associations in Massive Genetic Data
III:媒介:合作研究:在海量遗传数据中稳健且可扩展地发现显着关联
- 批准号:
1664629 - 财政年份:2016
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
INSPIRE Track 1: Exploring New Route of Optically Mediated Self-Assembly: Final Material Properties Determine Its Structures
INSPIRE 轨道 1:探索光介导自组装的新途径:最终材料特性决定其结构
- 批准号:
1344290 - 财政年份:2013
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Materials World Network: Classical and Quantum Optical Metamaterials by Combining Top-down and Bottom-up Fabrication Techniques
材料世界网络:结合自上而下和自下而上制造技术的经典和量子光学超材料
- 批准号:
1210170 - 财政年份:2012
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Toward Robust and Scalable Discovering of Significant Associations in Massive Genetic Data
III:媒介:合作研究:在海量遗传数据中稳健且可扩展地发现显着关联
- 批准号:
1162374 - 财政年份:2012
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
基于生物类芬顿的LA/Sch@BB耦合系统去除水产养殖尾水中抗生素的效果与机制研究
- 批准号:42377063
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
具有低聚合收缩和生态防龋双功能的埃洛石纳米管@SCH-79797改性复合树脂的研究
- 批准号:82170950
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
一类稳态Schödinger-Poisson-Slater方程标准化解的研究
- 批准号:11501137
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
锥中修改的Poisson-Sch积分在无穷远点处的渐近行为及其应用
- 批准号:U1304102
- 批准年份:2013
- 资助金额:30.0 万元
- 项目类别:联合基金项目
酵母中Sch9蛋白激酶信号途径调控衰老的分子机理
- 批准号:30671181
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:
10816864 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Collaborative Research: SCH: Psychophysiological sensing to enhance mindfulness-based interventions for self-regulation of opioid cravings
合作研究:SCH:心理生理学传感,以增强基于正念的干预措施,以自我调节阿片类药物的渴望
- 批准号:
2320678 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: Striking a Balance: Trust and Privacy in Using Adolescents' Data for Diabetes Self-Management
SCH:取得平衡:使用青少年数据进行糖尿病自我管理的信任和隐私
- 批准号:
10602775 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Collaborative Research: SCH: Psychophysiological sensing to enhance mindfulness-based interventions for self-regulation of opioid cravings
合作研究:SCH:心理生理学传感,以增强基于正念的干预措施,以自我调节阿片类药物的渴望
- 批准号:
2124282 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Psychophysiological Sensing to Enhance Mindfulness-Based Interventions for Self-Regulation of Opioid Cravings
合作研究:SCH:心理生理学感知,以增强基于正念的干预措施,以自我调节阿片类药物的渴望
- 批准号:
2124285 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: Striking a Balance: Trust and Privacy in Using Adolescents' Data for Diabetes Self-Management
SCH:取得平衡:使用青少年数据进行糖尿病自我管理的信任和隐私
- 批准号:
10707359 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
SCH: INT: Personalized Proactive Diabetes Self-Management and Social Networking for American Indians
SCH:INT:美国印第安人的个性化主动糖尿病自我管理和社交网络
- 批准号:
1722913 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: A Self-Adaptive Personalized Behavior Change System for Adolescent Preventive Healthcare
SCH:INT:合作研究:青少年预防保健的自适应个性化行为改变系统
- 批准号:
1344670 - 财政年份:2013
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: A Self-Adaptive Personalized Behavior Change System for Adolescent Preventive Healthcare
SCH:INT:合作研究:青少年预防保健的自适应个性化行为改变系统
- 批准号:
1344803 - 财政年份:2013
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SCH: INT: Novel Techniques for Patient-centric Disease Management using Automatically Inferred Behavioral Biomarkers and Sensor-Supported Contextual Self-Report
SCH:INT:使用自动推断的行为生物标志物和传感器支持的上下文自我报告进行以患者为中心的疾病管理的新技术
- 批准号:
1344587 - 财政年份:2013
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant