Collaborative Research: DMS/NIGMS 1: Simulating cell migration with a multi-scale 3D model fed by intracellular tension sensing measurements
合作研究:DMS/NIGMS 1:使用由细胞内张力传感测量提供的多尺度 3D 模型模拟细胞迁移
基本信息
- 批准号:2347956
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This is a Collaborative Project between Indiana University Indianapolis and Purdue University. Cell migration plays a major role in many settings including cancer metastasis, wound healing, and the immune response. For example, breast cancer cell migration is considered a major risk factor for metastatic bone or lung tumors and fibroblast migration in wound healing has roles in diabetes and necrotizing enterocolitis (life-threatening intestinal wounds that affect 10% of premature babies). This project aims to understand the intrinsic properties of cell migration, i.e., how internal forces of a cell respond to the properties of the surrounding, external environment and drive cell migration. To do this, The PIs will develop a novel mathematical model of a migrating cell. The model combines pre-existing knowledge of cell migration and cell properties with an imaging method that can measure subcellular forces. The model will yield force information throughout the cell, not just at the measurement locations. Accompanying that model with appropriate statistical analysis will help identify how the external environment can effect migration via internal subcellular force generation. This, in turn, will help us better understand how to inhibit (e.g. cancer) or promote (e.g. wound healing) cell migration in order to improve patient outcomes. The project will mentor and train graduates from multiple disciplines, undergraduates from institutions lacking research opportunities through Indiana University Indianapolis’s NSF-DMS REU program, and socioeconomically disadvantaged high schoolers through the American Chemical Society Project SEED/STEM. Plans include outreach via presentations and minisymposia at several conferences, open-access publications, YouTube postings, in-class modules, local community presentations (Science on Tap), and the STEM Youth Enrichment Summer program for underrepresented high schoolers. Cell migration is driven by its intracellular forces but is mainly directed by extracellular properties and perturbations. To understand how extracellular properties determine internal forces to direct cell migration, the PIs plan to accomplish three specific aims: 1) Develop a model that integrates experimentally measured intracellular tensions and uses them to establish a force architecture throughout the cell, 2) Use that model and the experimental measurements to identify which subcellular components play major roles in cell migration, and 3) Use modeling and experiments to understand the response of internal forces and migration of the cell to the external properties. Through this approach the PIs will be able to identify several primary pathways (external properties to subcellular components to directed motion) by which external properties use subcellular forces to direct migration. In the model, the cell will be represented by a set of interconnected viscoelastic springs modeling the membrane and other subcellular components. The flow will be modeled using a novel lattice-Boltzmann approach for steady-state Stokes flow. Fluid-structure interaction will be modeled using the immersed boundary method. The model will be calibrated and validated using the experiments. The internal tension experiments will use imaging methods and various molecular tension sensors to capture the force landscape within a cell, particularly at focal adhesions, cytoskeletal junctures, and the nuclear envelope. The external environmental alteration will include the extracellular matrix stiffness, chemotactic gradient, and flow properties. Correlation, sensitivity, and principal component analyses will be used to identify potential migratory pathways.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这是一个合作项目之间的印第安纳州大学印第安纳波利斯和普渡大学。细胞迁移在许多情况下起着重要作用,包括癌症转移、伤口愈合和免疫应答。例如,乳腺癌细胞迁移被认为是转移性骨或肺肿瘤的主要风险因素,伤口愈合中的成纤维细胞迁移在糖尿病和坏死性小肠结肠炎(影响10%早产儿的危及生命的肠道伤口)中起作用。该项目旨在了解细胞迁移的内在特性,即,细胞的内力如何响应周围的特性,外部环境和驱动细胞迁移。为此,PI将开发一种新的迁移细胞数学模型。该模型结合了细胞迁移和细胞特性的预先存在的知识与成像方法,可以测量亚细胞力。该模型将产生整个单元的力信息,而不仅仅是在测量位置。伴随着适当的统计分析,该模型将有助于确定外部环境如何通过内部亚细胞力的产生来影响迁移。反过来,这将有助于我们更好地了解如何抑制(例如癌症)或促进(例如伤口愈合)细胞迁移,以改善患者的预后。该项目将通过印第安纳州印第安纳波利斯大学的NSF-DMS REU计划指导和培训来自多个学科的毕业生,缺乏研究机会的大学生,以及通过美国化学学会项目SEED/STEM指导和培训社会经济弱势高中生。计划包括通过在几次会议上的演讲和minisymopsia,开放获取出版物,YouTube帖子,课堂模块,当地社区演示(自来水科学)以及针对代表性不足的高中生的STEM青年充实夏季计划进行推广。细胞迁移是由其细胞内的力量,但主要是由细胞外的性质和扰动。为了了解细胞外特性如何决定引导细胞迁移的内力,PI计划实现三个具体目标:1)开发整合实验测量的细胞内张力的模型,并使用它们来建立整个细胞的力结构,2)使用该模型和实验测量来识别哪些亚细胞组分在细胞迁移中起主要作用,以及3)使用建模和实验来理解内力和细胞迁移对外部属性的响应。通过这种方法,PI将能够识别几个主要途径(外部属性到亚细胞成分到定向运动),外部属性通过这些途径使用亚细胞力来定向迁移。在该模型中,细胞将由一组相互连接的粘弹性弹簧来表示,这些弹簧模拟了膜和其他亚细胞成分。流动将使用一种新的格子玻尔兹曼方法为稳态斯托克斯流建模。流体-结构相互作用将采用浸没边界法建模。该模型将使用实验进行校准和验证。内部张力实验将使用成像方法和各种分子张力传感器来捕获细胞内的力景观,特别是在粘着斑,细胞骨架连接处和核包膜处。外部环境的改变将包括细胞外基质硬度、趋化梯度和流动特性。相关性、敏感性和主成分分析将用于识别潜在的迁移途径。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jared Barber其他文献
Jared Barber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
新型双功能DMS/DMSP产生基因的作用机制与生态贡献研究
- 批准号:42306115
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
丘脑束旁核至背内侧纹状体(Pf-DMS)痕迹环路介导可卡因成瘾及电针耳穴干预的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小麦dms突变体小花异常发育的细胞分子遗传学研究
- 批准号:31571646
- 批准年份:2015
- 资助金额:63.0 万元
- 项目类别:面上项目
人结直肠癌细胞系中DMs和HSRs扩增机制及其关系研究
- 批准号:81301752
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于ZnO基DMS的核壳结构/多层膜的结构及电、磁性能研究
- 批准号:51002144
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
EMCD和ALCHEMI研究单个DMS纳米结构的铁磁性内禀属性
- 批准号:50902014
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
红树林土壤细菌二甲基硫化物(DMS)产生相关功能基因的分子生态学研究
- 批准号:30870448
- 批准年份:2008
- 资助金额:33.0 万元
- 项目类别:面上项目
典型海湾地区痕量气候气体的研究
- 批准号:49476298
- 批准年份:1994
- 资助金额:8.0 万元
- 项目类别:面上项目
我国东部沿海海域二甲基硫(DMS)排放量的研究
- 批准号:49405062
- 批准年份:1994
- 资助金额:6.0 万元
- 项目类别:青年科学基金项目
西太平洋地区DMS和其它硫化物分布的观测分析研究
- 批准号:49275230
- 批准年份:1992
- 资助金额:5.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DMS/NIGMS 1: Simulating cell migration with a multi-scale 3D model fed by intracellular tension sensing measurements
合作研究:DMS/NIGMS 1:使用由细胞内张力传感测量提供的多尺度 3D 模型模拟细胞迁移
- 批准号:
2347957 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMS/NIGMS 2: Novel machine-learning framework for AFMscanner in DNA-protein interaction detection
合作研究:DMS/NIGMS 2:用于 DNA-蛋白质相互作用检测的 AFM 扫描仪的新型机器学习框架
- 批准号:
10797460 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Collaborative Research: DMS/NIGMS 2: New statistical methods, theory, and software for microbiome data
合作研究:DMS/NIGMS 2:微生物组数据的新统计方法、理论和软件
- 批准号:
10797410 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Collaborative Research: DMS/NIGMS 1: Identifiability investigation of Multi-scale Models of Infectious Diseases
合作研究:DMS/NIGMS 1:传染病多尺度模型的可识别性研究
- 批准号:
10794480 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
RUI: Collaborative Research: DMS/NIGMS 1: The mathematical laws of morphology and biomechanics through ontogeny
RUI:合作研究:DMS/NIGMS 1:通过个体发育的形态学和生物力学的数学定律
- 批准号:
2152792 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMS/NIGMS2: Discovering the Principles of Active Self-Organization in the Differentiating Genome Using Multi-Scale Modeling and In-Vivo Experiments
合作研究:DMS/NIGMS2:利用多尺度建模和体内实验发现分化基因组中主动自组织的原理
- 批准号:
2153520 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219384 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
DMS/NIGMS 1: Collaborative Research: Advanced Ion Channel Modeling and Computational Tools with Application to Voltage-Dependent Anion Channel and Mitochondrial Model Development
DMS/NIGMS 1:合作研究:先进离子通道建模和计算工具,应用于电压依赖性阴离子通道和线粒体模型开发
- 批准号:
2153387 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
DMS-EPSRC Collaborative Research: Advancing Statistical Foundations and Frontiers from and for Emerging Astronomical Data Challenges
DMS-EPSRC 合作研究:推进统计基础和前沿,应对新出现的天文数据挑战
- 批准号:
EP/W015080/1 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Research Grant
DMS/NIGMS 1: Collaborative Research: Advanced Ion Channel Modeling and Computational Tools with Application to Voltage-Dependent Anion Channel and Mitochondrial Model Development
DMS/NIGMS 1:合作研究:先进离子通道建模和计算工具,应用于电压依赖性阴离子通道和线粒体模型开发
- 批准号:
2153376 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant