Robust and Reliable Mathematical Models for Biomolecular Data via Differential Geometry and Graph Theory

通过微分几何和图论建立稳健可靠的生物分子数据数学模型

基本信息

  • 批准号:
    2151802
  • 负责人:
  • 金额:
    $ 30.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

This project is jointly funded by Division of Mathematical Sciences/Mathematical Biology Program and the Established Program to Stimulate Competitive Research (EPSCoR).A major trend of biological sciences in the 21st century is their transition from quantitative, phenomenological, and descriptive to quantitative, analytical, and predictive. Fundamental challenges that hinder the current understanding of biomolecular structure-function relationships, which is the central theme of biological sciences, are their tremendous structural complexity and excessively large datasets. The project will address grand challenges in understanding the biomolecular structure-function relationship from massive datasets by introducing new concepts in graph theory and differential geometry. The results from this project will open a new direction and foster similar approaches in biological data analysis. The graduate and undergraduate students will receive training in data analysis, biological modeling, and algorithm development from this project. In addition, novel mathematical frameworks will be available in the software packages to ensure extensive usage by the community of researchers throughout biology, computer science, and mathematics.This project will develop new spectral graph theory and differential geometry-based approaches to revolutionize the current practice in biomolecular data analysis and modeling. First, investigators will introduce multiscale weighted colored algebraic graphs (spectral graphs) to reduce the structural complexity of biomolecular data. These methods will be tailored for various biological systems, such as protein binding to protein, ligand, DNA, and RNA, protein folding stability changes upon mutation, drug toxicity, solvation, solubility, and partition coefficient. Secondly, investigators will construct low-dimensional element interactive manifolds for the first time to properly encode chemical and biological information. These methods will be carefully integrated with advanced machine learning or deep learning algorithms to uncover biomolecular structure-function relationships. Finally, investigators will extensively validate the proposed methods on a variety of datasets, optimize these mathematical learning strategies using parallel and GPU architectures, and develop user-friendly software packages or online servers for researchers who might not have training in mathematics and machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目由数学科学部/数学生物学计划和促进竞争性研究计划(EPSCoR)共同资助。21世纪生物科学的一个主要趋势是从定量、现象学和描述性转向定量、分析和预测性。阻碍目前对生物分子结构-功能关系的理解的基本挑战是其巨大的结构复杂性和过大的数据集,这是生物科学的中心主题。该项目将通过引入图论和微分几何中的新概念,解决从大规模数据集中理解生物分子结构-功能关系的巨大挑战。该项目的结果将开辟一个新的方向,并促进生物数据分析的类似方法。研究生和本科生将从该项目中接受数据分析,生物建模和算法开发方面的培训。此外,新的数学框架将在软件包中提供,以确保整个生物学,计算机科学和数学领域的研究人员广泛使用。该项目将开发新的光谱图理论和微分几何为基础的方法,以彻底改变目前的生物分子数据分析和建模实践。首先,研究人员将引入多尺度加权彩色代数图(光谱图),以减少生物分子数据的结构复杂性。这些方法将针对各种生物系统进行定制,例如蛋白质与蛋白质、配体、DNA和RNA的结合,突变时蛋白质折叠稳定性的变化,药物毒性,溶剂化,溶解度和分配系数。其次,研究人员将首次构建低维元素交互流形,以正确编码化学和生物信息。这些方法将与先进的机器学习或深度学习算法仔细整合,以揭示生物分子的结构-功能关系。最后,研究人员将在各种数据集上广泛验证所提出的方法,使用并行和GPU架构优化这些数学学习策略,开发用户-友好的软件包或在线服务器的研究人员谁可能没有在数学和机器学习的培训。这个奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Novel Molecular Representations Using Neumann-Cayley Orthogonal Gated Recurrent Unit
  • DOI:
    10.1021/acs.jcim.2c01526
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Edison Mucllari;Vasily Zadorozhnyy;Qiang Ye;D. Nguyen
  • 通讯作者:
    Edison Mucllari;Vasily Zadorozhnyy;Qiang Ye;D. Nguyen
Geometric graph learning with extended atom-types features for protein-ligand binding affinity prediction
  • DOI:
    10.1016/j.compbiomed.2023.107250
  • 发表时间:
    2023-07-27
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Rana,Md Masud;Nguyen,Duc Duy
  • 通讯作者:
    Nguyen,Duc Duy
Multiscale laplacian learning
  • DOI:
    10.1007/s10489-022-04333-2
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    E. Merkurjev;D. Nguyen;Guo-Wei Wei-Guo-Wei-Wei-2113827098
  • 通讯作者:
    E. Merkurjev;D. Nguyen;Guo-Wei Wei-Guo-Wei-Wei-2113827098
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Duc Nguyen其他文献

Examination of the use of complementary and alternative medicine in Central Appalachia, USA.
美国中部阿巴拉契亚地区补充和替代医学的使用情况检查。
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Duc Nguyen;P. Gavaza;Leah K. Hollon;R. Nicholas
  • 通讯作者:
    R. Nicholas
Slipped Capital Femoral Epiphysis: Rationale for the Technique of Percutaneous In Situ Fixation
股骨头骨骺滑脱:经皮原位固定技术的基本原理
  • DOI:
    10.1097/01241398-199005000-00009
  • 发表时间:
    1990
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Duc Nguyen;R. Morrissy
  • 通讯作者:
    R. Morrissy
Encapsulation by Directed PISA: RAFT-Based Polymer-Vesiculated Pigment for Opacity Enhancement in Paint Films
  • DOI:
    10.1002/marc.202100008
  • 发表时间:
    2021-04-13
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Duc Nguyen;Vien Huynh;Hawkett, Brian
  • 通讯作者:
    Hawkett, Brian
Quetiapine Treatment in Youth Is Associated With Decreased Insulin Secretion
青少年喹硫平治疗与胰岛素分泌减少有关
  • DOI:
    10.1097/jcp.0000000000000118
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Y. F. Ngai;Paul V. Sabatini;Duc Nguyen;Jana Davidson;J. Chanoine;A. Devlin;F. Lynn;C. Panagiotopoulos
  • 通讯作者:
    C. Panagiotopoulos
Synergistic association between cytochrome bd-encoded Proteiniphilum and reactive oxygen species (ROS)-scavenging methanogens in microaerobic-anaerobic digestion of lignocellulosic biomass.
细胞色素 bd 编码的嗜蛋白菌和活性氧 (ROS) 清除产甲烷菌在木质纤维素生物质的微需氧-厌氧消化中的协同关联。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    12.8
  • 作者:
    Zhuoying Wu;Duc Nguyen;T. Y. Lam;H. Zhuang;Shilva Shrestha;L. Raskin;S. Khanal;Po
  • 通讯作者:
    Po

Duc Nguyen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Duc Nguyen', 18)}}的其他基金

DMS/NIGMS 1: Data-driven Ricci curvatures and spectral graph for machine learning and adaptive virtual screening
DMS/NIGMS 1:用于机器学习和自适应虚拟筛选的数据驱动的 Ricci 曲率和谱图
  • 批准号:
    2245903
  • 财政年份:
    2023
  • 资助金额:
    $ 30.67万
  • 项目类别:
    Continuing Grant
Collaborative Research: Integrating Algebraic Topology, Graph Theory, and Multiscale Analysis for Learning Complex and Diverse Datasets
协作研究:集成代数拓扑、图论和多尺度分析来学习复杂多样的数据集
  • 批准号:
    2053284
  • 财政年份:
    2021
  • 资助金额:
    $ 30.67万
  • 项目类别:
    Continuing Grant
Collaborative Research: Development of New Prototype Tools, and Adaptation and Implementation of Current Resources for a Course in Numerical Methods
合作研究:新原型工具的开发以及数值方法课程现有资源的改编和实施
  • 批准号:
    0836916
  • 财政年份:
    2009
  • 资助金额:
    $ 30.67万
  • 项目类别:
    Standard Grant

相似海外基金

Enabling Reliable Testing Of SMLM Datasets
实现 SMLM 数据集的可靠测试
  • 批准号:
    BB/X01858X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.67万
  • 项目类别:
    Research Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 30.67万
  • 项目类别:
    Standard Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 30.67万
  • 项目类别:
    Standard Grant
STTR Phase I: A Reliable and Efficient New Method for Satellite Attitude Control
STTR第一阶段:可靠、高效的卫星姿态控制新方法
  • 批准号:
    2310323
  • 财政年份:
    2024
  • 资助金额:
    $ 30.67万
  • 项目类别:
    Standard Grant
CAREER: Graded and Reliable Aerosol Deposition for Electronics (GRADE): Understanding Multi-Material Aerosol Jet Printing with In-Line Mixing
职业:电子产品的分级且可靠的气溶胶沉积 (GRADE):了解通过在线混合进行多材料气溶胶喷射打印
  • 批准号:
    2336356
  • 财政年份:
    2024
  • 资助金额:
    $ 30.67万
  • 项目类别:
    Standard Grant
RITA: Reliable and Efficient Task Management in Edge Computing for AIoT Systems
RITA:AIoT 系统边缘计算中可靠、高效的任务管理
  • 批准号:
    EP/Y015886/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.67万
  • 项目类别:
    Fellowship
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
  • 批准号:
    EP/Y021614/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.67万
  • 项目类别:
    Research Grant
Economic & Reliable DC Microgrids
经济的
  • 批准号:
    EP/Y034619/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.67万
  • 项目类别:
    Fellowship
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
  • 批准号:
    24K20848
  • 财政年份:
    2024
  • 资助金额:
    $ 30.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Speedy and Reliable Approximate Queries in Hybrid Transactional/Analytical Systems
职业:混合事务/分析系统中快速可靠的近似查询
  • 批准号:
    2339596
  • 财政年份:
    2024
  • 资助金额:
    $ 30.67万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了