Collaborative Research: Linking microplastic decomposition rates in soils to their microbe-mineral associations using carbon stable isotopes and microspectroscopy

合作研究:利用碳稳定同位素和显微光谱学将土壤中的微塑料分解率与其微生物矿物关联联系起来

基本信息

项目摘要

Plastics use has skyrocketed globally since the mid-1950s due to a combination of their utility and low price. A large fraction is for single-use applications. Consequently, more than 25 million metric tons of plastic are annually discarded into terrestrial environments. Bio-based plastics produced from readily renewable carbon sources (i.e., corn) are increasingly being used as substitutes for legacy plastics sourced from fossil fuels. Bio-based plastics are advantageous because their carbon is converted from atmospheric CO2 instead of petroleum. Furthermore, some of these plastics are designed to biodegrade in bioactive environments. All plastics are broken down in the environment by chemical and physical processes into smaller microplastics (less than 5 mm in size) that may become accessible to microorganisms and utilized for their life function or survival. The fate of microplastic residues depends on their degradation in the environment. This research tracks the degradation of microplastic particles of polylactic acid (PLA, a bio-based plastic) and polyethylene terephthalate (PET, a petroleum-based plastic) in soils, where their slow decomposition can lead to plastic accumulation. The research exploits unique carbon isotopic ‘tags’ naturally inherent or artificially introduced to plastics to quantify decomposition with imaging and microbial community analysis to identify how degradation is occurring. The main goal of the work is to monitor the transferal of the isotopic tags to microbial biomass, and eventually, the carbon dioxide and/or methane gas microbes produce or “exhale”. The research is important because it will expand society’s limited understanding of how plastics impact soil health and function, and natural earth processes (i.e., carbon cycling) given plastics’ potential to alter the natural emission of climate warming gases like carbon dioxide and methane in soil systems. Bringing the science of microplastics to a diverse community is a priority of the research team. The project involves and supports secondary, undergraduate, and graduate level students that will be co-mentored by a multidisciplinary faculty team. Students will be involved in research objectives and trained in communicating science to the public. Importantly, students will gain experience across three increasingly related fields for solving the plastic pollution crisis: geochemistry, analytical chemistry, and polymer/green chemistry.Microplastic decomposition occurs through synergistic abiotic weathering of the plastic and key enzymatic and/or microbial interactions. Due to their acclimation to anthropogenic waste, it is hypothesized that the soil microbiome will assimilate and mineralize microplastics, and that natural soil processes like physical mixing and chemical hydrolysis will promote the integration of soil plastics within aggregates and affect the overall assimilation and mineralization of soil organic carbon and plastics by the soil microbiome. The hypotheses will be tested in controlled soil microcosms by utilizing naturally abundant and isotopically labeled (synthesized) polymers that are experimentally degraded and exposed to soils and their native microbiome. Isotopic labels offer an approach to identify assimilation and/or mineralization since they will separate these and other competing processes and/or those that may be impractical to measure in a short period. The incorporation of the plastics’ isotope label will be monitored via phospholipid fatty acid biomarkers and final mineralization gases (i.e., carbon dioxide and methane) using isotope ratio mass spectrometry. Spectroscopy based approaches (i.e., synchrotron-based scanning transmission X-ray microscopy and near-edge X-ray absorption fine-structure spectroscopy) will account for the plastics’ reactivity and association with soil aggregates. The combination of stable isotopic, spectral, and isotopic mass balance approaches will establish a fundamental understanding of plastic decomposition, and include a modeling of their assimilation and mineralization, transformation to lower weight products, and final conversion to carbon dioxide and methane in soils. This research will further basic science understanding of physical, chemical, and biological processes in soils and address a topic of great current practical interest in environmental geochemistry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自20世纪50年代中期以来,由于塑料的实用性和低廉的价格,塑料在全球的使用量急剧上升。很大一部分用于一次性应用程序。因此,每年有超过2500万吨的塑料被丢弃到陆地环境中。由易于再生的碳源(即玉米)生产的生物基塑料越来越多地被用作来自化石燃料的传统塑料的替代品。生物基塑料是有利的,因为它们的碳是由大气中的二氧化碳而不是石油转化而来的。此外,其中一些塑料被设计成在生物活性环境中生物降解。所有塑料都在环境中通过化学和物理过程分解成更小的微塑料(尺寸小于5毫米),微生物可以接触到这些微塑料,并利用它们的生命功能或生存。微塑料残留物的命运取决于它们在环境中的降解程度。这项研究追踪了聚乳酸(PLA,一种生物基塑料)和聚对苯二甲酸乙二醇酯(PET,一种石油基塑料)的微塑料颗粒在土壤中的降解,它们的缓慢分解会导致塑料堆积。该研究利用独特的碳同位素“标签”,自然固有或人为引入塑料,通过成像和微生物群落分析来量化分解,以确定降解是如何发生的。这项工作的主要目标是监测同位素标签向微生物生物量的转移,最终,微生物产生或“呼出”二氧化碳和/或甲烷气体。这项研究很重要,因为它将扩大社会对塑料如何影响土壤健康和功能以及自然地球过程(即碳循环)的有限理解,因为塑料有可能改变土壤系统中二氧化碳和甲烷等气候变暖气体的自然排放。将微塑料科学带给多样化的社区是研究团队的首要任务。该项目涉及并支持中学、本科和研究生水平的学生,这些学生将由一个多学科的教师团队共同指导。学生将参与研究目标,并接受向公众传播科学的培训。重要的是,学生将在三个日益相关的领域获得解决塑料污染危机的经验:地球化学、分析化学和聚合物/绿色化学。微塑性分解是通过塑料的协同非生物风化和关键的酶和/或微生物相互作用发生的。由于微塑料对人为废弃物的适应,我们假设土壤微生物组会同化和矿化微塑料,而物理混合和化学水解等土壤自然过程会促进土壤塑料在团聚体内的整合,并影响土壤微生物组对土壤有机碳和塑料的整体同化和矿化。这些假设将在受控的土壤微观环境中进行测试,方法是利用天然丰富的同位素标记(合成)聚合物,这些聚合物经过实验降解并暴露于土壤及其原生微生物群中。同位素标记提供了一种识别同化和/或矿化的方法,因为它们将这些过程与其他竞争过程和/或那些可能在短时间内无法测量的过程分开。塑料的同位素标签将通过磷脂脂肪酸生物标志物和最终矿化气体(即二氧化碳和甲烷)使用同位素比质谱法进行监测。基于光谱学的方法(即基于同步加速器的扫描透射x射线显微镜和近边缘x射线吸收精细结构光谱学)将解释塑料的反应性及其与土壤团聚体的关联。稳定同位素、光谱和同位素质量平衡方法的结合将建立对塑性分解的基本理解,并包括它们的同化和矿化、转化为较低重量产品以及最终转化为土壤中的二氧化碳和甲烷的建模。这项研究将进一步加深对土壤中物理、化学和生物过程的基础科学理解,并解决当前环境地球化学中一个非常有实际意义的话题。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Giebel其他文献

TCT-21 Impact of Age and Aortic Valve Calcium Score on Relative SAVR Implant Size
  • DOI:
    10.1016/j.jacc.2024.09.346
  • 发表时间:
    2024-10-29
  • 期刊:
  • 影响因子:
  • 作者:
    Timothy Mixon;Addison McGinn;Brian Giebel;Giuseppe Tavilla;Jay Widmer
  • 通讯作者:
    Jay Widmer
TCT-22 Relationship of Surgical Aortic Prosthesis Size to CTA Derived Annular Measurements
  • DOI:
    10.1016/j.jacc.2024.09.347
  • 发表时间:
    2024-10-29
  • 期刊:
  • 影响因子:
  • 作者:
    Timothy Mixon;Addison McGinn;Brian Giebel;Giuseppe Tavilla;Jay Widmer
  • 通讯作者:
    Jay Widmer

Brian Giebel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Linking microbial social interactions within soil aggregate communities to ecosystem C, N, and P cycling
合作研究:将土壤团聚群落内的微生物社会相互作用与生态系统 C、N 和 P 循环联系起来
  • 批准号:
    2346372
  • 财政年份:
    2024
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Standard Grant
Collaborative Research: Linking carbon preferences and competition to predict and test patterns of functional diversity in soil microbial communities
合作研究:将碳偏好和竞争联系起来,预测和测试土壤微生物群落功能多样性的模式
  • 批准号:
    2312302
  • 财政年份:
    2024
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Standard Grant
Collaborative Research: Linking microbial social interactions within soil aggregate communities to ecosystem C, N, and P cycling
合作研究:将土壤团聚群落内的微生物社会相互作用与生态系统 C、N 和 P 循环联系起来
  • 批准号:
    2346371
  • 财政年份:
    2024
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
  • 批准号:
    2311092
  • 财政年份:
    2023
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Standard Grant
Collaborative Research: Linking iron and nitrogen sources in an oligotrophic coastal margin: Nitrogen fixation and the role of boundary fluxes
合作研究:连接寡营养海岸边缘的铁和氮源:固氮和边界通量的作用
  • 批准号:
    2422709
  • 财政年份:
    2023
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Standard Grant
Collaborative Research: Linking iron and nitrogen sources in an oligotrophic coastal margin: Nitrogen fixation and the role of boundary fluxes
合作研究:连接寡营养海岸边缘的铁和氮源:固氮和边界通量的作用
  • 批准号:
    2341997
  • 财政年份:
    2023
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
  • 批准号:
    2243099
  • 财政年份:
    2023
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Standard Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
  • 批准号:
    2318829
  • 财政年份:
    2023
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Continuing Grant
Collaborative Research: Bioarchaeology, Osteoimmunology, and Ecoimmunology: Linking Inflammation, Life History Tradeoffs, and Biocultural Change
合作研究:生物考古学、骨免疫学和生态免疫学:将炎症、生活史权衡和生物文化变革联系起来
  • 批准号:
    2316573
  • 财政年份:
    2023
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Linking geochemical proxy records to crustal stratigraphic context via community-interactive cyberinfrastructure
合作研究:要素:通过社区交互式网络基础设施将地球化学代理记录与地壳地层背景联系起来
  • 批准号:
    2311091
  • 财政年份:
    2023
  • 资助金额:
    $ 45.17万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了