Additive and Combinatorial Problems in Groups

群中的加法和组合问题

基本信息

  • 批准号:
    2246921
  • 负责人:
  • 金额:
    $ 21.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

This project is jointly funded by the Combinatorics program, the Established Program to Stimulate Competitive Research (EPSCoR), and the Algebra and Number Theory program. In this project, the PI aims to study certain problems in groups. A group is a mathematical structure in which we can add and subtract two elements, just like in the integers. Groups are fundamental objects in mathematics and ubiquitous in real life; for example, the numbers on a 12-hour clock form a group of 12 elements. The addressed problems are of combinatorial nature; for example, if we take any subset of a group, then as long as the subset is ''large'' in some sense (without any assumption on its structure), we predict that some pattern will emerge. Graduate students will be trained as part of this proposal. The PI will also be involved in K-12 outreach.The groups studied in this project are: (1) The integers and their polynomial ring analogs, for which techniques from number theory apply, (2) finite groups, including vector spaces over finite fields, for which techniques from algebra apply, and (3) more general amenable groups, for which techniques from Fourier analysis and ergodic theory apply. Problems studied in this proposal include the following: If a subset A of a group G is large in some sense (e.g. A has positive density, or comes from a finite partition of G), then can one find structures in sumsets such as A-A and A+A-A? This question is intimately related to various notions of recurrence in ergodic theory and topological dynamics. If A is a sparse set, e.g. a subset of the primes, then this question will lead to patterns hitherto unexplored in the primes. The PI will also study other additive problems such as additive bases, essential components, and exponential sums using various techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由组合学计划,刺激竞争研究的既定计划(EPSCoR)以及代数和数论计划共同资助。在这个项目中,PI的目的是在小组中研究某些问题。群是一种数学结构,我们可以在其中添加和减去两个元素,就像整数一样。群是数学中的基本对象,在真实的生活中无处不在;例如,12小时时钟上的数字形成了12个元素的群。所解决的问题是组合性质的;例如,如果我们取一个组的任何子集,那么只要该子集在某种意义上是“大的”(没有对其结构的任何假设),我们就预测会出现某种模式。研究生将接受培训,作为本提案的一部分。PI也将参与K-12的推广。在这个项目中研究的群体是:(1)整数及其多项式环的类似物,从数论的技术应用,(2)有限群,包括有限域上的向量空间,从代数的技术应用,和(3)更一般的顺从群,从傅立叶分析和遍历理论的技术应用。在这个建议中研究的问题包括:如果一个群G的子集A在某种意义上是大的(例如A有正密度,或来自G的有限划分),那么可以找到结构的和集,如A-A和A+A-A?这个问题与遍历理论和拓扑动力学中的各种递归概念密切相关。如果A是一个稀疏集,例如素数的子集,那么这个问题将导致迄今为止尚未探索的素数模式。PI还将使用各种技术研究其他加性问题,如加性基础、基本成分和指数和。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thai Hoang Le其他文献

Selective pressure of various levels of erythromycin on the development of antibiotic resistance
不同水平红霉素对产生抗生素抗性的选择压力
  • DOI:
    10.1016/j.envpol.2025.125757
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    7.300
  • 作者:
    Tianren Wang;Xinzhu Yi;Thai Hoang Le;Vaishnavi Sivachidambaram;Zhi Zhou
  • 通讯作者:
    Zhi Zhou
Fingerprint reference point detection for image retrieval based on symmetry and variation
  • DOI:
    10.1016/j.patcog.2012.02.017
  • 发表时间:
    2012-09-01
  • 期刊:
  • 影响因子:
    8
  • 作者:
    Thai Hoang Le;Hoang Thien Van
  • 通讯作者:
    Hoang Thien Van

Thai Hoang Le的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thai Hoang Le', 18)}}的其他基金

Analytic and Combinatorial Problems in Number Theory
数论中的分析和组合问题
  • 批准号:
    1702296
  • 财政年份:
    2017
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Standard Grant

相似海外基金

Problems in Combinatorial Geometry and Ramsey Theory
组合几何和拉姆齐理论中的问题
  • 批准号:
    2246847
  • 财政年份:
    2023
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Standard Grant
Strengths and Limitations of Formulations for Combinatorial Optimization Problems.
组合优化问题公式的优点和局限性。
  • 批准号:
    RGPIN-2020-04346
  • 财政年份:
    2022
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of algebraic methods in combinatorial problems
代数方法在组合问题中的应用
  • 批准号:
    RGPIN-2020-05481
  • 财政年份:
    2022
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
  • 批准号:
    RGPIN-2016-04274
  • 财政年份:
    2022
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Discovery Grants Program - Individual
A study on Diophantine problems via combinatorial methods
丢番图问题的组合方法研究
  • 批准号:
    22K13900
  • 财政年份:
    2022
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Problems Arising in Combinatorial Algebraic Geometry
组合代数几何中出现的问题
  • 批准号:
    573649-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 21.9万
  • 项目类别:
    University Undergraduate Student Research Awards
Efficient Algorithms for Combinatorial Optimization Problems in Networks and Beyond
网络及其他领域组合优化问题的有效算法
  • 批准号:
    RGPIN-2017-03956
  • 财政年份:
    2022
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for Combinatorial Optimization Problems
组合优化问题的近似算法
  • 批准号:
    RGPIN-2020-06423
  • 财政年份:
    2022
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for hard quadratic combinatorial optimization problems and linkages with quantum bridge analytics
硬二次组合优化问题的算法以及与量子桥分析的联系
  • 批准号:
    RGPIN-2021-03190
  • 财政年份:
    2022
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Discovery Grants Program - Individual
Metaheuristics and Heuristics for Combinatorial and Discrete Optimization Problems
组合和离散优化问题的元启发式和启发式
  • 批准号:
    DDG-2021-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 21.9万
  • 项目类别:
    Discovery Development Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了