CAS: Reaction and Deactivation Implications of Pore structure, Nodal Identity, and Coordination Environment on Small-molecule Oxidations by Metal-organic Frameworks

CAS:孔结构、节点特性和配位环境对金属有机框架小分子氧化的反应和失活影响

基本信息

  • 批准号:
    2246949
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

With the support of the Chemical Catalysis program in the Division of Chemistry, Michele L. Sarazen of Princeton University is studying selective oxidation reactions that are central in a variety of pharmaceutical, fine chemical, and other chemical industry processes. Specifically, this work is directed at the design of advanced catalysts with high reactivity, selectivity, and stability that can efficiently and sustainably address our growing energy and product demands through combined synthesis, characterization, and reaction analysis. Metal-organic frameworks (MOFs) are a class of materials attractive for many chemistries, including oxidations. This proposal aims to provide understanding of how MOFs behave under model operating conditions, their deactivation pathways, and their reactivation. If successful, the results of these studies will help guide further research, not only in catalysis but also for other applications such as gas capture and separations, energy storage, drug delivery, and sensors. Additional implications for commercial sustainability from understanding material limitations can improve existing materials in terms of thermochemical robustness and stability, and reducing waste from spent catalysts. Similarly, this work prioritizes sustainable practices by considering cheaper and more abundant metals and more benign oxidants compared to many current industrial processes. PI Sarazen will continue her engagement in scientific outreach and educational programs that aim to increase diversity within the scientific community through demonstrations in on-/off-campus outreach events that utilize these catalysts in the oxidation of dye molecules found in wastewater, offering exciting, vibrant color changes that can be used to promote the power of catalyst applications and public scientific literacy on sustainable industrial chemistry. This project involves the study of liquid-phase oxidation reactions valuable for industrial applications through experimental and computational characterizations. The regularly distributed metal centers in open crystalline MOF networks will be used to build structure-function relations and elucidate reaction and deactivation mechanisms during representative oxidation reactions of 1-octene, where rigorous kinetic experiments will be coupled with characterization techniques and computational modelling. Specifically, this proposed work will investigate physicochemically tunable Fe-based MIL MOFs during hydrogen peroxide-assisted oxidation of conformationally and synthetically modular 1-octene to quantify the impacts of pore hydrophobicity, acidity, and Fe active site coordination sphere perturbations on observed reactivity, selectivity, and stability. The results of this experimental study will motivate computational investigations with density functional theory by taking advantage of the crystalline nature of MOFs and could develop trends that predict promising material compositions or methods to improve existing materials for a desired application. The framework described here for studying entire catalytic lifecycles, including specific mechanistic details for oxidation reactions on Fe-carboxylate MOFs, has the potential to provide a foundation that can be extended to improve catalyst efficiency for other reactions of various feedstocks related to hydrocarbon and oxygenate processing from carbon upgrading (petroleum/biomass/waste refining) over different MOF architectures and even different energy (i.e., electrocatalytic, photocatalytic) inputs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学催化项目的支持下,Michele L.普林斯顿大学的Sarazen正在研究选择性氧化反应,这是各种制药,精细化工和其他化学工业过程的核心。具体而言,这项工作旨在设计具有高反应性,选择性和稳定性的先进催化剂,通过综合合成,表征和反应分析,可以有效和可持续地满足我们不断增长的能源和产品需求。金属有机骨架(M0 F)是一类对许多化学反应(包括氧化反应)有吸引力的材料。该提案旨在了解MOFs在模型操作条件下的行为、失活途径及其再活化。如果成功的话,这些研究的结果将有助于指导进一步的研究,不仅在催化方面,而且在其他应用方面,如气体捕获和分离,能量储存,药物输送和传感器。了解材料限制对商业可持续性的其他影响可以改善现有材料的热化学鲁棒性和稳定性,并减少废催化剂的浪费。同样,这项工作优先考虑可持续的做法,考虑更便宜,更丰富的金属和更良性的氧化剂相比,许多目前的工业过程。PI Sarazen将继续参与科学推广和教育计划,旨在通过校内/校外推广活动中的示范来增加科学界的多样性,这些活动利用这些催化剂氧化废水中发现的染料分子,提供令人兴奋的,充满活力的颜色变化,可用于促进催化剂应用的力量和公众对可持续工业化学的科学素养。该项目涉及通过实验和计算表征对工业应用有价值的液相氧化反应的研究。在开放的结晶MOF网络中规则分布的金属中心将用于建立结构-功能关系,并阐明1-辛烯的代表性氧化反应过程中的反应和失活机制,其中严格的动力学实验将与表征技术和计算建模相结合。具体而言,这项拟议的工作将调查物理化学可调的铁基MIL的MOFs在过氧化氢辅助氧化的构象和合成模块化1-辛烯,以量化孔的疏水性,酸度和Fe活性位点的影响,所观察到的反应性,选择性和稳定性的协调领域的扰动。这项实验研究的结果将通过利用MOFs的结晶性质来激发密度泛函理论的计算研究,并可以开发预测有前途的材料组合物或方法的趋势,以改善现有材料的所需应用。这里描述的用于研究整个催化生命周期的框架,包括Fe-羧酸盐MOF上的氧化反应的具体机理细节,具有提供基础的潜力,该基础可以扩展以提高与来自不同MOF架构和甚至不同能量(即,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michele Sarazen其他文献

Michele Sarazen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michele Sarazen', 18)}}的其他基金

CAREER: Engineering Circular Hydrocarbon Reactions in Zeolite-based Catalysts
职业:在沸石基催化剂中设计循环碳氢化合物反应
  • 批准号:
    2338497
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
EFRI DCheM: Engineering Interfaces between Plasma, Catalysts, and Reactor Design for Natural Gas Conversion to Liquid Products
EFRI DCheM:等离子体、催化剂和反应器设计之间的工程接口,用于将天然气转化为液体产品
  • 批准号:
    2029425
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于Hydrodynamics-Reaction Kinetics耦合模型的厌氧膨胀床反应器三相流场数值模拟及生态-水力响应机制解析
  • 批准号:
    51078108
  • 批准年份:
    2010
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Investigating Hyporheic Zone Reaction Enhancement by Bioclogging Across Scales
合作研究:研究跨尺度生物堵塞增强潜流区反应
  • 批准号:
    2345366
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Rational Design of Dual-Functional Photocatalysts for Synthetic Reactions: Controlling Photosensitization and Reaction with a Single Nanocrystal
职业:用于合成反应的双功能光催化剂的合理设计:用单个纳米晶体控制光敏化和反应
  • 批准号:
    2339866
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Mixed Quantum-Classical Semiclassical Theory: Finding Reaction Paths in Open Quantum Systems
混合量子经典半经典理论:寻找开放量子系统中的反应路径
  • 批准号:
    2404809
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAS:Improving the Activity of Homogeneous Mn Catalysts for the Oxygen Reduction Reaction
CAS:提高均相锰催化剂的氧还原反应活性
  • 批准号:
    2348515
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Dehydration reaction in water using geo-mimetic confined nanochannels
使用几何模拟受限纳米通道在水中进行脱水反应
  • 批准号:
    24K17586
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Tuning catalyst reaction environments towards photoreforming of wastewater
调整催化剂反应环境以实现废水的光重整
  • 批准号:
    DP240100687
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
CAS: Cu, Fe, and Ni Pincer Complexes: A Platform for Fundamental Mechanistic Investigations and Reaction Discovery
CAS:Cu、Fe 和 Ni 钳配合物:基础机理研究和反应发现的平台
  • 批准号:
    2349827
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
  • 批准号:
    2337666
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Interactions between learning and non-learning plasticity in the beadlet sea anenome Actinia equina: A multidimensional reaction norm approach.
珠状海葵海葵中学习和非学习可塑性之间的相互作用:一种多维反应规范方法。
  • 批准号:
    BB/Y002474/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
CAREER: Identifying reaction mechanisms for the formation of stable interphases in lithium metal batteries
职业:确定锂金属电池中形成稳定界面的反应机制
  • 批准号:
    2338202
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了