EFRI DCheM: Engineering Interfaces between Plasma, Catalysts, and Reactor Design for Natural Gas Conversion to Liquid Products
EFRI DCheM:等离子体、催化剂和反应器设计之间的工程接口,用于将天然气转化为液体产品
基本信息
- 批准号:2029425
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Traditional large-scale chemical plants and refineries rely heavily on high-temperature catalysis to transform hydrocarbon feedstocks to fuels and chemicals. Such processes carry high energy demands, which are typically provided by natural gas combustion with a large associated generation of CO2. This project investigates an alternative approach – plasma catalysis – that can be powered by renewable electricity and engineered to enable distributed production of chemicals and liquid fuels from otherwise stranded and flared natural gas. This project combines researchers at Princeton University, University of South Carolina, and Stanford University with expertise in catalysis, plasma physics and chemistry, and nanomanufacturing with national laboratories and industry to provide a variety of research and educational initiatives that will nurture future U.S. leaders and innovators in energy and engineering sciences and technology. The project is supported by a broadening participation plan to attract underrepresented minority (URM) students (e.g. high-school, undergraduate, and graduate students) for summer on-campus learning programs, industrial internships, and thesis research. Such emphasis aligns with the team’s educational goal of creating a pipeline in science and engineering for students from high school through college and advanced degrees. Further, collaborations with national laboratories and industry and the formation of the Center Advisory Board and Industrial Consortium will facilitate the innovation and technology transfer to market. Renewable electricity from solar and wind provides unprecedented opportunities for distributed reactors using low-temperature, non-equilibrium atmospheric misty plasma catalysis. The overarching project goal is to investigate the plasma-assisted catalytic conversion of methane to higher-order liquid hydrocarbons and oxygenated fuels and chemicals. Key challenges addressed are: (i) understanding non-equilibrium energy transfer and transformation of matters in plasma catalysis; (ii) identifying methods to stabilize plasma without impacting its efficiency; (iii) coordination between plasma properties and catalytic activity, selectivity, and stability in chemical conversion; (iv) development of experimentally validated, predictive kinetic and transport models for novel plasma catalysts and reactor co-design; and (v) elucidating reactor design and manufacturing criteria that optimize plasma and catalyst integration. The studies will advance fundamental understanding of plasma catalysis by conducting advanced laser diagnostics of non-equilibrium plasma properties, excited states, and chemistry, and by developing experimentally validated predictive multiscale modeling tools for plasma chemistry and transformation of matter in plasma catalysis. Moreover, elements of hybrid plasma control, catalyst design, and additive manufacturing will be employed to develop an innovative micro-aerosol plasma catalytic reactor (MAPCAR) as a modular device to enable efficient and selective conversion of abundant feedstocks such as stranded natural gas and CO2, to liquid fuels and oxygenated chemical precursors. Time-resolved simultaneous plasma properties and chemistry diagnostics will be employed to enhance fundamental understanding of the non-equilibrium plasma states, energy transfer, chemical kinetics, and transformation of matters in plasma-catalysis. The data will be used to develop and experimentally validate models and multiscale plasma catalysis modeling tools for MAPCAR optimization. The research will not only advance the scientific understanding of the elementary physical and chemical processes in plasma catalysis, but also develop a new predictive tool for plasma catalysis design, new control methods for achieving uniform atmospheric plasma, and new techniques to manufacture distributed plasma catalytic reactors for chemical processing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传统的大型化工厂和炼油厂严重依赖高温催化将烃原料转化为燃料和化学品。这种工艺具有高能量需求,通常由天然气燃烧提供,并伴随产生大量CO2。该项目研究了一种替代方法-等离子体催化-可以由可再生电力提供动力,并设计用于从其他搁浅和燃烧的天然气中分散生产化学品和液体燃料。该项目将普林斯顿大学、南卡罗来纳州大学和斯坦福大学的研究人员与国家实验室和工业界在催化、等离子体物理和化学以及纳米制造方面的专业知识相结合,提供各种研究和教育计划,以培养未来美国能源和工程科学技术的领导者和创新者。该项目得到了扩大参与计划的支持,以吸引代表性不足的少数民族(URM)学生(例如高中,本科和研究生)参加暑期校园学习计划,工业实习和论文研究。这种强调与团队的教育目标相一致,即为从高中到大学和高等学位的学生创建一个科学和工程管道。此外,与国家实验室和工业界的合作以及中心咨询委员会和工业联盟的成立将促进创新和技术向市场转移。来自太阳能和风能的可再生电力为使用低温,非平衡大气雾状等离子体催化的分布式反应器提供了前所未有的机会。该项目的总体目标是研究甲烷等离子体辅助催化转化为高级液态烃和含氧燃料和化学品。应对的主要挑战是:(i)了解等离子体催化中物质的非平衡能量转移和转化;(ii)确定稳定等离子体而不影响其效率的方法;(iii)等离子体性质与化学转化中的催化活性、选择性和稳定性之间的协调;(iv)为新型等离子体催化剂和反应器协同设计开发实验验证的预测动力学和传输模型;和(v)阐明优化等离子体和催化剂整合的反应器设计和制造标准。这些研究将通过对非平衡等离子体性质、激发态和化学进行先进的激光诊断,并通过开发实验验证的等离子体化学和等离子体催化中物质转化的预测多尺度建模工具,推进对等离子体催化的基本理解。此外,混合等离子体控制,催化剂设计和增材制造的元素将用于开发创新的微气溶胶等离子体催化反应器(MAPCAR)作为模块化设备,以实现将大量原料(如搁浅的天然气和CO2)有效和选择性地转化为液体燃料和含氧化学前体。时间分辨的同步等离子体性质和化学诊断将被用来加强对非平衡等离子体状态,能量转移,化学动力学和等离子体催化中物质转化的基本理解。这些数据将用于开发和实验验证模型和多尺度等离子体催化建模工具,用于MAPCAR优化。该研究不仅将促进对等离子体催化中基本物理和化学过程的科学理解,而且还将为等离子体催化设计开发新的预测工具,为实现均匀大气等离子体开发新的控制方法,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Programmable heating and quenching for efficient thermochemical synthesis
- DOI:10.1038/s41586-022-04568-6
- 发表时间:2022-05-19
- 期刊:
- 影响因子:64.8
- 作者:Dong, Qi;Yao, Yonggang;Hu, Liangbing
- 通讯作者:Hu, Liangbing
Effect of doping TiO 2 with Mn for electrocatalytic oxidation in acid and alkaline electrolytes
Mn掺杂TiO 2 对酸性和碱性电解液中电催化氧化的影响
- DOI:10.1039/d2ya00027j
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Vallez, Lauren;Jimenez-Villegas, Santiago;Garcia-Esparza, Angel T.;Jiang, Yue;Park, Sangwook;Wu, Qianying;Gill, Thomas Mark;Sokaras, Dimosthenis;Siahrostami, Samira;Zheng, Xiaolin
- 通讯作者:Zheng, Xiaolin
Plasma Thermal-Chemical Instability of Low-Temperature Dimethyl Ether Oxidation in a Nanosecond-Pulsed Dielectric Barrier Discharge
纳秒脉冲介质阻挡放电中低温二甲醚氧化的等离子体热化学不稳定性
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Hongtao Zhong, Hongtao Zhong
- 通讯作者:Hongtao Zhong, Hongtao Zhong
Sensitive and single-shot OH and temperature measurements by femtosecond cavity-enhanced absorption spectroscopy
通过飞秒腔增强吸收光谱进行灵敏的单次 OH 和温度测量
- DOI:10.1364/ol.460338
- 发表时间:2022
- 期刊:
- 影响因子:3.6
- 作者:Liu, Ning;Zhong, Hongtao;Chen, Timothy Y.;Lin, Ying;Wang, Ziyu;Ju, Yiguang
- 通讯作者:Ju, Yiguang
Toward Intrinsic Catalytic Rates and Selectivities of Zeolites in the Presence of Limiting Diffusion and Deactivation
- DOI:10.1021/acscatal.3c03559
- 发表时间:2023-09
- 期刊:
- 影响因子:12.9
- 作者:Cole W. Hullfish;Jun Zhi Tan;Hayat I. Adawi;Michele L. Sarazen
- 通讯作者:Cole W. Hullfish;Jun Zhi Tan;Hayat I. Adawi;Michele L. Sarazen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michele Sarazen其他文献
Michele Sarazen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michele Sarazen', 18)}}的其他基金
CAREER: Engineering Circular Hydrocarbon Reactions in Zeolite-based Catalysts
职业:在沸石基催化剂中设计循环碳氢化合物反应
- 批准号:
2338497 - 财政年份:2024
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
CAS: Reaction and Deactivation Implications of Pore structure, Nodal Identity, and Coordination Environment on Small-molecule Oxidations by Metal-organic Frameworks
CAS:孔结构、节点特性和配位环境对金属有机框架小分子氧化的反应和失活影响
- 批准号:
2246949 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
相似海外基金
EFRI DCheM: Making Cement Green by Low-Temperature Manufacturing of Calcium Hydroxide from Distributed Waste Sources
EFRI DCheM:通过从分布式废物源中低温制造氢氧化钙,使水泥变得绿色
- 批准号:
2132022 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Distributed solar energy harvesting for carbon-free ammonia synthesis
EFRI DCheM:用于无碳氨合成的分布式太阳能收集
- 批准号:
2131709 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Chemicals from Renewables Through Green Electrochemistry (ChaRGE)
EFRI DCheM:通过绿色电化学从可再生能源中生产化学品 (ChaRGE)
- 批准号:
2132200 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Distributed Manufacturing of Personalized Medicines
EFRI DCheM:个性化药品的分布式制造
- 批准号:
2029139 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Re-Engineering the Nitrogen Cycle: Distributed Electrochemical Nitrogen Refineries for Ammonia Synthesis and Water Purification
EFRI DCheM:重新设计氮循环:用于氨合成和水净化的分布式电化学氮精炼厂
- 批准号:
2132007 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Distributed Ribonucleic Acid (RNA) Manufacturing via Continuous Enzymatic Reaction and Separation in Biphasic Liquid Media
EFRI DCheM:通过双相液体介质中的连续酶促反应和分离进行分布式核糖核酸 (RNA) 制造
- 批准号:
2132141 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Distributed Photosynthetic Recovery of Livestock Waste Nutrients for Sustainable Production of Fertilizers
EFRI DCheM:畜牧废物养分的分布式光合回收用于肥料的可持续生产
- 批准号:
2132036 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Digital design of a network of distributed modular and agile manufacturing systems with optimal supply chain for personalized medical treatments
EFRI DCheM:分布式模块化和敏捷制造系统网络的数字化设计,具有个性化医疗的最佳供应链
- 批准号:
2132142 - 财政年份:2021
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: Renewable Energy Driven Electrocatalytic Co-Conversion of CO2 and Regional Feedstocks to Chemicals and Fuels
EFRI DCheM:可再生能源驱动的二氧化碳和区域原料电催化共转化为化学品和燃料
- 批准号:
2029326 - 财政年份:2020
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI DCheM: One-step conversion of CH4 and CO2 to liquid fuels with the use of a multi-functional pseudo catalytic system
EFRI DCheM:使用多功能伪催化系统将 CH4 和 CO2 一步转化为液体燃料
- 批准号:
2029282 - 财政年份:2020
- 资助金额:
$ 200万 - 项目类别:
Standard Grant