Divided Differences, Pipe Dreams, Brick Manifolds, and Braid Varieties

分歧、白日梦、砖流形和辫子品种

基本信息

  • 批准号:
    2246959
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Many mathematical (and other-scientifical) problems are of the form: if we impose a certain list of conditions on some desired object X, how many Xs exist, or indeed are there any at all? Any nonlinear such problem (for example, "how many points lie both on this line and that circle?" probably two) has linearizations and even those can be hard to answer. 20th century algebraic tools are powerful enough to compute the number of Xs satisfying basically any such linearized problem; however, when that number is computed as one big sum minus another big sum, it can be hard to predict when the result is zero vs. positive! Much of the PI's work, and the first part of this project, is in a search for alternate formulae that do not involve any cancelation. Graduate students will be trained and postdocs will be mentored during the course of this project.This project consists of three subprojects (almost wholly independent, though all straddle algebraic combinatorics and algebraic geometry). The first subproject concerns the divided-difference-operator recurrence that defines Schubert polynomials, characterizing and exploiting a second family of operators that commute with the first. The second subproject has a new approach to an age-old question: "is the scheme of pairs of commuting matrices a reduced scheme?" The PI has a degeneration of this scheme to a union of components (indexed by "generic pipe dreams", which are of great interest in their own right), and if this latter union is reduced then so too is the commuting scheme. The third and final subproject introduces a spectral sequence for computing the cohomology of "braid varieties", which connects to Khovanov homology of links, to cluster algebras, and to basic questions in representation theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多数学(和其他科学)问题都是这样的形式:如果我们对某个期望的对象X施加一定的条件列表,那么存在多少个X,或者确实存在任何X?任何非线性的此类问题(例如,“这条线和那个圆上都有多少个点?“可能是两个)具有线性化,即使是那些也很难回答。20世纪世纪的代数工具已经足够强大,可以计算出基本上满足任何线性化问题的X的数量;然而,当这个数字被计算为一个大的总和减去另一个大的总和时,很难预测结果是零还是正!PI的大部分工作,以及这个项目的第一部分,都是在寻找不涉及任何取消的替代公式。本项目包括三个子项目(几乎完全独立,但都跨越代数组合学和代数几何学)。第一个子项目涉及的除差算子递归定义舒伯特多项式,特征和利用第二个家庭的运营商,第一个交换。第二个子项目对一个古老的问题有一个新的方法:“交换矩阵对的方案是一个简化方案吗?”PI将这个方案退化为一个组件的联合(由“通用的白日梦”索引,它们本身就很有兴趣),如果后者的联合被减少,那么通勤方案也是如此。第三个也是最后一个子项目介绍了一个光谱序列计算的“辫子品种”,连接到Khovanov同源的链接,集群代数,并在表示论的基本问题的上同调。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Allen Knutson其他文献

A Littelmann-type formula for Duistermaat-Heckman measures
  • DOI:
    10.1007/s002220050283
  • 发表时间:
    1999-01-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Allen Knutson
  • 通讯作者:
    Allen Knutson
Interpolating between classic and bumpless pipe dreams
在经典与无波澜的白日梦之间穿插
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allen Knutson;G. Udell
  • 通讯作者:
    G. Udell
Sheaves on toric varieties for physics
物理学中复曲面品种的滑轮
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allen Knutson;Eric Sharpe
  • 通讯作者:
    Eric Sharpe

Allen Knutson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Allen Knutson', 18)}}的其他基金

Schubert Calculus, Quiver Varieties, and Kazhdan-Lusztig Coefficients
舒伯特微积分、箭袋品种和 Kazhdan-Lusztig 系数
  • 批准号:
    1953948
  • 财政年份:
    2020
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Combinatorial State Sums and Interval Flag Varieties
组合状态和和区间标志变量
  • 批准号:
    1700372
  • 财政年份:
    2017
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
T-Poisson manifolds and Mirkovic-Vilonen cycles
T-泊松流形和 Mirkovic-Vilonen 循环
  • 批准号:
    1303124
  • 财政年份:
    2013
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Equivariant cohomology classes in quiver theory and statistical mechanics, and, a more geometric foundation of intersection theory
颤动理论和统计力学中的等变上同调类,以及交集理论的几何基础
  • 批准号:
    0956233
  • 财政年份:
    2009
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Degenerations of algebraic varieties, with applications to combinatorics and representation theory
代数簇的简并及其在组合数学和表示论中的应用
  • 批准号:
    0902296
  • 财政年份:
    2009
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Equivariant cohomology classes in quiver theory and statistical mechanics, and, a more geometric foundation of intersection theory
颤动理论和统计力学中的等变上同调类,以及交集理论的几何基础
  • 批准号:
    0604708
  • 财政年份:
    2006
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Schubert Calculus, and Degenerations to Toric Simplicial Complexes
舒伯特微积分和环面单纯复形的退化
  • 批准号:
    0636154
  • 财政年份:
    2005
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Schubert Calculus, and Degenerations to Toric Simplicial Complexes
舒伯特微积分和环面单纯复形的退化
  • 批准号:
    0303523
  • 财政年份:
    2003
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Generalized cohomology theories of flag manifolds, and other manifolds
标志流形和其他流形的广义上同调理论
  • 批准号:
    0072667
  • 财政年份:
    2000
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9627502
  • 财政年份:
    1996
  • 资助金额:
    $ 36万
  • 项目类别:
    Fellowship Award

相似海外基金

Drivers of Local Prosperity Differences: People, Firms and Places
地方繁荣差异的驱动因素:人、企业和地方
  • 批准号:
    ES/Z000130/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
Combining eye-tracking and comparative judgments to identify proficiency differences for more effective language learning
结合眼动追踪和比较判断来识别熟练程度差异,以实现更有效的语言学习
  • 批准号:
    24K16140
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Regional differences in itch transmission
瘙痒传播的区域差异
  • 批准号:
    2334697
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Understanding differences in host responses to African swine fever virus
了解宿主对非洲猪瘟病毒反应的差异
  • 批准号:
    BB/Z514457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Fellowship
New insights into cultural differences in empathic concern and prosocial behavior: A cross-cultural study in Japan and the U.S.
对移情关注和亲社会行为的文化差异的新见解:日本和美国的跨文化研究
  • 批准号:
    24K16787
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Individual differences in affective processing and implications for animal welfare: a reaction norm approach
情感处理的个体差异及其对动物福利的影响:反应规范方法
  • 批准号:
    BB/X014673/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
Human Pain Seminar Series Summit 2024-Advances in Pain Neuroimaging: harnessing individual differences to delineate mechanisms and biomarkers of disease
2024年人类疼痛研讨会系列峰会-疼痛神经影像学进展:利用个体差异来描述疾病的机制和生物标志物
  • 批准号:
    487851
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Miscellaneous Programs
A patient-oriented research approach to studying sex differences in the prosthetic needs and priorities of lower limb amputees
以患者为导向的研究方法,用于研究下肢截肢者的假肢需求和优先事项的性别差异
  • 批准号:
    485115
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Operating Grants
Game performance in the peripheral vision area considering individual differences and daily changes in the field of vision in VR
VR中考虑个体差异和视野日常变化的周边视觉区域的游戏表现
  • 批准号:
    23K11731
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular Mechanisms of Spine Disruption Developed from Mouse Strain Differences in Antiprion Drug Susceptibility
小鼠品系抗朊病毒药物敏感性差异导致脊柱破坏的分子机制
  • 批准号:
    23K05036
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了