Equivariant cohomology classes in quiver theory and statistical mechanics, and, a more geometric foundation of intersection theory
颤动理论和统计力学中的等变上同调类,以及交集理论的几何基础
基本信息
- 批准号:0956233
- 负责人:
- 金额:$ 0.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-01-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A common feature of my proposals is the use of algebro-geometric degeneration to study an interesting irreducible variety in terms of the many components it breaks into in a limit. Such degenerations are usually very destructive of the geometry, but the original and limiting schemes may define the same (equivariant) cohomology class in some ambient space. The degenerations I intend to study are (1) of moduli spaces of representations of quivers, where the type A case has become well understood in the last three years but types D,E are totally open; (2) of nilpotent orbits in Lie algebras, to the normal cones of their upper triangular part. The homology of the upper triangular part carries a (Springer) representation of the corresponding Weyl group; the normal cone I study has more components and, in the example I can compute so far, carries a representation of a richer algebra; (3) of subvarieties of projective space to reduced schemes with finite maps to projective space, where the degree of the map carries the information more usually seen in the nonreduced structure of the limit subscheme.If we replace a polynomial equation, like xy = zw, by one of its monomials, like xy = 0, the locus of solutions can often be made to retain the same volume even as it breaks into pieces. Where xy=zw has interesting nonflat geometry, but cannot be factored into pieces, xy=0 has interesting discrete structure (it has two pieces, x=0 and y=0, which intersect one another) even though each piece is flat. In the general setup, we have many polynomial conditions to begin with, and each is degenerated" to a simpler polynomial containing only some of the original monomials; a complicated condition guarantees that the dimension and volume of the solution set remains constant. In my work I study these degenerations where the ambient space is a space of (lists of) matrices, and the original equations are natural matrix conditions like "matrices whose square is zero". The difficulty comes in finding degenerations that preserve the dimension and volume, and then studying the resulting equations to understand the simpler pieces into which the degenerate locus factors. The resulting discrete structure is then of great interest combinatorially, and sheds light on the (topologically important) volume of the original locus.
我的建议的一个共同特点是使用代数几何退化来研究一个有趣的不可约品种的许多组成部分,它打破了限制。这样的退化通常对几何有很大的破坏性,但是原始的和极限的方案可以在某些周围空间中定义相同的(等变的)上同调类。我打算研究的退化是:(1)箭图表示的模空间,其中A型情形在过去三年中已得到很好的理解,但D、E型情形是完全开放的;(2)李代数中幂零轨道退化到其上三角部分的正规锥。上三角形部分的同源性带有一个(施普林格)表示相应的Weyl群;正常锥我研究有更多的组件,并在例子中,我可以计算到目前为止,携带一个更丰富的代数表示;(3)射影空间的子簇到射影空间的有限映射的约化概型,其中映射的次数携带了在极限子方案的非约化结构中更常见的信息。如果我们将多项式方程(如xy = zw)替换为它的一个单项式(如xy = 0),通常可以使溶液的轨迹保持相同的体积,即使它破碎成碎片。 其中xy=zw有有趣的非平坦几何,但不能分解成碎片,xy=0有有趣的离散结构(它有两个碎片,x=0和y=0,它们彼此相交),即使每个碎片都是平坦的。 在一般的设置中,我们有许多多项式条件开始,并且每个条件都退化为一个只包含一些原始单项式的简单多项式;一个复杂的条件保证解集的维数和体积保持不变。 在我的工作中,我研究这些退化的环境空间是一个(列表)矩阵的空间,和原始方程是自然的矩阵条件,如“矩阵的平方为零”。困难在于找到保持尺寸和体积的简并,然后研究所得方程以理解简并轨迹因子的更简单的部分。由此产生的离散结构,然后组合的极大兴趣,并揭示了(拓扑重要的)体积的原始轨迹。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allen Knutson其他文献
A Littelmann-type formula for Duistermaat-Heckman measures
- DOI:
10.1007/s002220050283 - 发表时间:
1999-01-01 - 期刊:
- 影响因子:3.600
- 作者:
Allen Knutson - 通讯作者:
Allen Knutson
Interpolating between classic and bumpless pipe dreams
在经典与无波澜的白日梦之间穿插
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Allen Knutson;G. Udell - 通讯作者:
G. Udell
Sheaves on toric varieties for physics
物理学中复曲面品种的滑轮
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Allen Knutson;Eric Sharpe - 通讯作者:
Eric Sharpe
Allen Knutson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allen Knutson', 18)}}的其他基金
Divided Differences, Pipe Dreams, Brick Manifolds, and Braid Varieties
分歧、白日梦、砖流形和辫子品种
- 批准号:
2246959 - 财政年份:2023
- 资助金额:
$ 0.02万 - 项目类别:
Standard Grant
Schubert Calculus, Quiver Varieties, and Kazhdan-Lusztig Coefficients
舒伯特微积分、箭袋品种和 Kazhdan-Lusztig 系数
- 批准号:
1953948 - 财政年份:2020
- 资助金额:
$ 0.02万 - 项目类别:
Continuing Grant
Combinatorial State Sums and Interval Flag Varieties
组合状态和和区间标志变量
- 批准号:
1700372 - 财政年份:2017
- 资助金额:
$ 0.02万 - 项目类别:
Continuing Grant
T-Poisson manifolds and Mirkovic-Vilonen cycles
T-泊松流形和 Mirkovic-Vilonen 循环
- 批准号:
1303124 - 财政年份:2013
- 资助金额:
$ 0.02万 - 项目类别:
Standard Grant
Degenerations of algebraic varieties, with applications to combinatorics and representation theory
代数簇的简并及其在组合数学和表示论中的应用
- 批准号:
0902296 - 财政年份:2009
- 资助金额:
$ 0.02万 - 项目类别:
Continuing Grant
Equivariant cohomology classes in quiver theory and statistical mechanics, and, a more geometric foundation of intersection theory
颤动理论和统计力学中的等变上同调类,以及交集理论的几何基础
- 批准号:
0604708 - 财政年份:2006
- 资助金额:
$ 0.02万 - 项目类别:
Standard Grant
Schubert Calculus, and Degenerations to Toric Simplicial Complexes
舒伯特微积分和环面单纯复形的退化
- 批准号:
0636154 - 财政年份:2005
- 资助金额:
$ 0.02万 - 项目类别:
Standard Grant
Schubert Calculus, and Degenerations to Toric Simplicial Complexes
舒伯特微积分和环面单纯复形的退化
- 批准号:
0303523 - 财政年份:2003
- 资助金额:
$ 0.02万 - 项目类别:
Standard Grant
Generalized cohomology theories of flag manifolds, and other manifolds
标志流形和其他流形的广义上同调理论
- 批准号:
0072667 - 财政年份:2000
- 资助金额:
$ 0.02万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9627502 - 财政年份:1996
- 资助金额:
$ 0.02万 - 项目类别:
Fellowship Award
相似国自然基金
Deligne-Mumford模空间的拓扑和二维orbifold的弦理论研究
- 批准号:10401026
- 批准年份:2004
- 资助金额:10.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Hopf Cyclic Cohomology, Characteristic Classes of Foliations, and Quantum Invariant of Knots.
Hopf 循环上同调、叶状特征类和结的量子不变量。
- 批准号:
355531-2013 - 财政年份:2017
- 资助金额:
$ 0.02万 - 项目类别:
Discovery Grants Program - Individual
Hopf Cyclic Cohomology, Characteristic Classes of Foliations, and Quantum Invariant of Knots.
Hopf 循环上同调、叶状特征类和结的量子不变量。
- 批准号:
355531-2013 - 财政年份:2016
- 资助金额:
$ 0.02万 - 项目类别:
Discovery Grants Program - Individual
Hopf Cyclic Cohomology, Characteristic Classes of Foliations, and Quantum Invariant of Knots.
Hopf 循环上同调、叶状特征类和结的量子不变量。
- 批准号:
355531-2013 - 财政年份:2015
- 资助金额:
$ 0.02万 - 项目类别:
Discovery Grants Program - Individual
Hopf Cyclic Cohomology, Characteristic Classes of Foliations, and Quantum Invariant of Knots.
Hopf 循环上同调、叶状特征类和结的量子不变量。
- 批准号:
355531-2013 - 财政年份:2014
- 资助金额:
$ 0.02万 - 项目类别:
Discovery Grants Program - Individual
Hopf Cyclic Cohomology, Characteristic Classes of Foliations, and Quantum Invariant of Knots.
Hopf 循环上同调、叶状特征类和结的量子不变量。
- 批准号:
355531-2013 - 财政年份:2013
- 资助金额:
$ 0.02万 - 项目类别:
Discovery Grants Program - Individual
Equivariant cohomology classes in quiver theory and statistical mechanics, and, a more geometric foundation of intersection theory
颤动理论和统计力学中的等变上同调类,以及交集理论的几何基础
- 批准号:
0604708 - 财政年份:2006
- 资助金额:
$ 0.02万 - 项目类别:
Standard Grant
Study on Geometrical properties of bundles using transfer maps and it's application
利用传递图研究束的几何性质及其应用
- 批准号:
10640080 - 财政年份:1998
- 资助金额:
$ 0.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Complex Line Bundles on Toroidal Groups and the Spaces of Holomorphic Sections
环形群上的复线束和全纯截面空间
- 批准号:
09640236 - 财政年份:1997
- 资助金额:
$ 0.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: Geometry of Characteristic Classes and Non-Abelian Cohomology
数学科学:特征类几何和非阿贝尔上同调
- 批准号:
9310433 - 财政年份:1993
- 资助金额:
$ 0.02万 - 项目类别:
Standard Grant
Characteristic Classes of Foliations and Gelfand-Fuks Cohomology
叶状结构和 Gelfand-Fuks 上同调的特征类
- 批准号:
7606763 - 财政年份:1976
- 资助金额:
$ 0.02万 - 项目类别:
Standard Grant