Degenerations of algebraic varieties, with applications to combinatorics and representation theory
代数簇的简并及其在组合数学和表示论中的应用
基本信息
- 批准号:0902296
- 负责人:
- 金额:$ 35.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Knutson's proposal makes use of degeneration of algebraic varieties to study algebraic combinatorics, particularly combinatorial representation theory. Littelmann's path model in representation theory already has such an interpretation: Chirivi gave a degeneration of each flag manifold G/P (plus ample line bundle) to a reduced, seminormal union of toric varieties. Unfortunately, this used properties of Lusztig's canonical basis, so was specific to representation theory applications. Knutson hopes to replace these properties with Samuel-Rees-Nagata degenerations, to achieve similar reducedness results for degenerations of much more general varieties.One specific application is in computing branching rules from a group G to a symmetric subgroup K, using a K-equivariant degeneration of G/P, and Knutson, jointly with Jiang-Hua Liu, states a conjectural rule based on this.Many interesting numbers and polynomials are associated to irreducible algebraic sets, where "irreducible" essentially means "not glued from smaller pieces in a nontrivial way". A circle x^2 + y^2 - 1 = 0 is such an example, as its equation does not factor, and one can associate the degree 2 to this equation. But if we degenerate it to x^2 + y^2 - 0 = 0, then the equation does factor (over the complex numbers), giving the union of two lines x = +/- iy. Those two equations are degree 1, and from the degenerative geometry we obtain the combinatorial result 2 = 1 + 1. Knutson uses this technique to study much more interesting irreducible sets, e.g. the space of all maximal nested chains of subspaces in a vector space; degenerating them to highly reducible unions of simple pieces replaces their geometric complexity with combinatorial complexity, and gives much more interesting formulae for their degrees (and generalizations thereof). In some of the work proposed, he specifically plans to pursue this technique to understand how quantum-mechanical systems with noncompact symmetry (e.g. under special relativity transformations, which allow boosts by speeds up to but not including light-speed) decompose when one only considers their compact symmetries (e.g. under rotation, by angles that are trapped on a circle and cannot run off to infinity). This is the same sort of problem (though the hoped-for results would be wholly complementary) as studied recently by the ATLAS team in the study of the representations of E_8.
Knutson的建议利用代数簇的退化来研究代数组合学,特别是组合表示论。表示论中的Littelmann路径模型已经有了这样的解释:Chirivi给出了每个旗流形G/P(加上充足的线丛)的退化为环面簇的简化的、非正规的并集。不幸的是,这使用了Lusztig的正则基的性质,因此是特定于表示论应用的。Knutson希望用Samuel-Rees-Nagata退化来代替这些性质,以获得更一般的变种退化的类似约化结果。一个具体的应用是计算从群G到对称子群K的分支规则,使用G/P的K-等变退化,Knutson与Jiang-Hua Liu,陈述了一个基于此的数学规则。许多有趣的数字和多项式都与不可约代数集相关联,其中“不可约”本质上意味着“不是以非平凡的方式从较小的片段胶合而成”。一个圆x^2 + y^2 - 1 = 0就是这样一个例子,因为它的方程没有因式,人们可以将2次与这个方程联系起来。但是如果我们将其退化为x^2 + y^2 - 0 = 0,那么方程就有因子(对复数),得到两条直线的并集x = +/- iy。这两个方程都是一次方程,从退化几何中我们得到组合结果2 = 1 + 1。克努森使用这种技术来研究更有趣的不可约集,例如向量空间中所有子空间的最大嵌套链的空间;将它们退化为简单片段的高度可约并集,用组合复杂性取代了它们的几何复杂性,并给出了更有趣的度公式(及其推广)。在他提出的一些工作中,他特别计划采用这种技术来理解具有非紧对称性的量子力学系统(例如在狭义相对论变换下,它允许速度达到但不包括光速)如何分解,当人们只考虑它们的紧对称性时(例如在旋转下,被困在一个圆上的角度不能无限大)。这与ATLAS小组最近在研究E_8的表示时所研究的问题是同一类的(尽管所希望的结果将是完全互补的)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allen Knutson其他文献
A Littelmann-type formula for Duistermaat-Heckman measures
- DOI:
10.1007/s002220050283 - 发表时间:
1999-01-01 - 期刊:
- 影响因子:3.600
- 作者:
Allen Knutson - 通讯作者:
Allen Knutson
Interpolating between classic and bumpless pipe dreams
在经典与无波澜的白日梦之间穿插
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Allen Knutson;G. Udell - 通讯作者:
G. Udell
Sheaves on toric varieties for physics
物理学中复曲面品种的滑轮
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Allen Knutson;Eric Sharpe - 通讯作者:
Eric Sharpe
Allen Knutson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allen Knutson', 18)}}的其他基金
Divided Differences, Pipe Dreams, Brick Manifolds, and Braid Varieties
分歧、白日梦、砖流形和辫子品种
- 批准号:
2246959 - 财政年份:2023
- 资助金额:
$ 35.13万 - 项目类别:
Standard Grant
Schubert Calculus, Quiver Varieties, and Kazhdan-Lusztig Coefficients
舒伯特微积分、箭袋品种和 Kazhdan-Lusztig 系数
- 批准号:
1953948 - 财政年份:2020
- 资助金额:
$ 35.13万 - 项目类别:
Continuing Grant
Combinatorial State Sums and Interval Flag Varieties
组合状态和和区间标志变量
- 批准号:
1700372 - 财政年份:2017
- 资助金额:
$ 35.13万 - 项目类别:
Continuing Grant
T-Poisson manifolds and Mirkovic-Vilonen cycles
T-泊松流形和 Mirkovic-Vilonen 循环
- 批准号:
1303124 - 财政年份:2013
- 资助金额:
$ 35.13万 - 项目类别:
Standard Grant
Equivariant cohomology classes in quiver theory and statistical mechanics, and, a more geometric foundation of intersection theory
颤动理论和统计力学中的等变上同调类,以及交集理论的几何基础
- 批准号:
0956233 - 财政年份:2009
- 资助金额:
$ 35.13万 - 项目类别:
Standard Grant
Equivariant cohomology classes in quiver theory and statistical mechanics, and, a more geometric foundation of intersection theory
颤动理论和统计力学中的等变上同调类,以及交集理论的几何基础
- 批准号:
0604708 - 财政年份:2006
- 资助金额:
$ 35.13万 - 项目类别:
Standard Grant
Schubert Calculus, and Degenerations to Toric Simplicial Complexes
舒伯特微积分和环面单纯复形的退化
- 批准号:
0636154 - 财政年份:2005
- 资助金额:
$ 35.13万 - 项目类别:
Standard Grant
Schubert Calculus, and Degenerations to Toric Simplicial Complexes
舒伯特微积分和环面单纯复形的退化
- 批准号:
0303523 - 财政年份:2003
- 资助金额:
$ 35.13万 - 项目类别:
Standard Grant
Generalized cohomology theories of flag manifolds, and other manifolds
标志流形和其他流形的广义上同调理论
- 批准号:
0072667 - 财政年份:2000
- 资助金额:
$ 35.13万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9627502 - 财政年份:1996
- 资助金额:
$ 35.13万 - 项目类别:
Fellowship Award
相似国自然基金
Lienard系统的不变代数曲线、可积性与极限环问题研究
- 批准号:12301200
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
对RS和AG码新型软判决代数译码的研究
- 批准号:61671486
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Birational Geometry and K-stability of Algebraic Varieties
职业:双有理几何和代数簇的 K 稳定性
- 批准号:
2234736 - 财政年份:2023
- 资助金额:
$ 35.13万 - 项目类别:
Continuing Grant
Geometry of analytic and algebraic varieties
解析几何和代数簇
- 批准号:
2301374 - 财政年份:2023
- 资助金额:
$ 35.13万 - 项目类别:
Standard Grant
Conference: Algebraic and topological interplay of algebraic varieties
会议:代数簇的代数和拓扑相互作用
- 批准号:
2304894 - 财政年份:2023
- 资助金额:
$ 35.13万 - 项目类别:
Standard Grant
Cohomology theories for algebraic varieties
代数簇的上同调理论
- 批准号:
2883661 - 财政年份:2023
- 资助金额:
$ 35.13万 - 项目类别:
Studentship
Homotopy theoretic study of algebraic varieties with modulus
带模代数簇的同伦理论研究
- 批准号:
22KJ1016 - 财政年份:2023
- 资助金额:
$ 35.13万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Studies on canonical bundles of algebraic varieties
代数簇的正则丛研究
- 批准号:
23H01064 - 财政年份:2023
- 资助金额:
$ 35.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The study of algebraic varieties related to Calabi-Yau varieties in positive characteristic
与Calabi-Yau簇相关的正特征代数簇研究
- 批准号:
23K03066 - 财政年份:2023
- 资助金额:
$ 35.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RTG: Arithmetic, Combinatorics, and Topology of Algebraic Varieties
RTG:代数簇的算术、组合学和拓扑
- 批准号:
2231565 - 财政年份:2023
- 资助金额:
$ 35.13万 - 项目类别:
Continuing Grant
Research on singularities of algebraic varieties
代数簇的奇异性研究
- 批准号:
22K03224 - 财政年份:2022
- 资助金额:
$ 35.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Projective geometry in arbitrary characteristic and its application to fundamental algebraic varieties
任意特征的射影几何及其在基本代数簇中的应用
- 批准号:
22K03236 - 财政年份:2022
- 资助金额:
$ 35.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)