Structure theorems beyond Z-systems
Z 系统之外的结构定理
基本信息
- 批准号:2247331
- 负责人:
- 金额:$ 16.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Ergodic theory is a rapidly evolving area of mathematical research which investigates the long-term behavior of dynamical systems. It encompasses deep connections across many mathematical fields, including analysis, combinatorics, and number theory. Structure theorems in ergodic theory, an essential tool in understanding the average behavior of dynamical systems over space and time, have been especially valuable in advancing the field over the past two decades. While most research on structure theorems has focused on systems with a single transformation, our understanding of systems with multiple transformations remains limited. In this project, the PI aims to establish new structure theorems for systems with multiple transformations, offering a fresh perspective on open problems in ergodic theory and combinatorics. The PI will introduce new courses and seminars, and provide guidance to undergraduate and graduate students, as well as postdoctoral fellows. Additionally, the PI will engage in activities aimed at promoting mathematics to the broader community as well as reaching out to underrepresented groups.The project can be divided into two main parts. The first part aims to deepen our understanding of concatenation theory, a new tool introduced by Tao and Ziegler in recent years to study the intersections of different factors of a dynamical system. A new framework for concatenation theory will be pursued which would apply in a wider range of settings, leading to new structure theorems. The second part of the project will use the structure theorems developed in the first part to investigate two specific open questions in ergodic theory and combinatorics. The first question pertains to the joint ergodicity conjecture, which concerns the convergence of multiple ergodic averages. Recent advances, including work of the PI, have established powerful tools for studying such questions. The second question focuses on the geometric Ramsey conjecture, a long-standing open question in combinatorics which studies geometric patterns that cannot be destroyed by partitioning Euclidean space into finitely many parts. To address this question, methods from higher order Fourier analysis, along with newly developed tools derived from structure theorems, will be employed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
遍历理论是一个快速发展的数学研究领域,它研究动力系统的长期行为。它包含了许多数学领域的深刻联系,包括分析,组合学和数论。 遍历理论中的结构定理是理解动力系统在空间和时间上的平均行为的重要工具,在过去的二十年里,它在推进该领域方面特别有价值。虽然大多数关于结构定理的研究都集中在具有单个变换的系统上,但我们对具有多个变换的系统的理解仍然有限。在这个项目中,PI的目的是建立新的结构定理的系统与多重变换,提供了一个新的视角开放的问题,遍历理论和组合。PI将引入新的课程和研讨会,并为本科生和研究生以及博士后研究员提供指导。此外,PI将参与旨在向更广泛的社区推广数学的活动,并接触代表性不足的群体。该项目可分为两个主要部分。第一部分旨在加深我们对级联理论的理解,这是陶和齐格勒近年来引入的一种新工具,用于研究动力系统不同因素的交叉点。 一个新的框架串联理论将追求这将适用于更广泛的设置,导致新的结构定理。 第二部分的项目将使用结构定理开发的第一部分,调查两个具体的开放问题,遍历理论和组合。第一个问题涉及联合遍历猜想,它涉及多个遍历平均的收敛性。 最近的进展,包括PI的工作,为研究这些问题建立了强大的工具。 第二个问题集中在几何拉姆齐猜想,一个长期存在的开放问题,在组合学研究几何模式,不能被破坏的分割欧几里德空间成许多部分。为了解决这个问题,从高阶傅立叶分析的方法,沿着与新开发的工具来自结构定理,将采用。这个奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenbo Sun其他文献
Sarnak's Conjecture for nilsequences on arbitrary number fields and applications
- DOI:
10.1016/j.aim.2023.108883 - 发表时间:
2019-02 - 期刊:
- 影响因子:1.7
- 作者:
Wenbo Sun - 通讯作者:
Wenbo Sun
Mixing rules and morphology dependence of the scatterer
散射体的混合规则和形态依赖性
- DOI:
10.1016/j.jqsrt.2014.07.022 - 发表时间:
2015 - 期刊:
- 影响因子:2.3
- 作者:
G. Videen;E. Zubko;Wenbo Sun;Y. Shkuratov;A. Yuffa - 通讯作者:
A. Yuffa
Solar‐Driven Catalytic Urea Oxidation for Environmental Remediation and Energy Recovery
- DOI:
10.1002/cssc.202201263 - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Wenbo Sun;Meng Zhang;Jianan Li;Chong Peng - 通讯作者:
Chong Peng
Understanding the new trends in pedestrian injury distribution and mechanism through data linkage and modeling
- DOI:
10.1016/j.aap.2023.107095 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:
- 作者:
Jingwen Hu;Carol Flannagan;Sailesh Ganesan;Patrick Bowman;Wenbo Sun;Iskander Farooq;Anil Kalra;Jonathan Rupp - 通讯作者:
Jonathan Rupp
Transcriptome analysis reveals the effects of dietary protein level on growth performance and metabolism in adult <em>Procambarus clarkii</em> farming in rice field
- DOI:
10.1016/j.aqrep.2024.101949 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Honghao Jin;Yu Li;Chuanbo Xiao;Wenbo Sun;Fan Liu;Zhenlin Ke;Shengfu Zhao;Feng Qin;Kai Lei;Jiaqian Wu;Hua Ye;Yuanfa He;Xuliang Zhai;Yong Lin;Dapeng Wang;Guangjun Lv;Hui Luo - 通讯作者:
Hui Luo
Wenbo Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 16.05万 - 项目类别:
Standard Grant
CAREER: KKM-Type Theorems for Piercing Numbers, Mass Partition, and Fair Division
职业:刺穿数、质量划分和公平除法的 KKM 型定理
- 批准号:
2336239 - 财政年份:2024
- 资助金额:
$ 16.05万 - 项目类别:
Continuing Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
- 批准号:
23K10982 - 财政年份:2023
- 资助金额:
$ 16.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Limit Theorems and Structural Properties of Stochastic Models
随机模型的极限定理和结构性质
- 批准号:
2889380 - 财政年份:2023
- 资助金额:
$ 16.05万 - 项目类别:
Studentship
New development of geometric complex analysis based on L2 estimates and L2 extension theorems
基于L2估计和L2可拓定理的几何复形分析新进展
- 批准号:
23K12978 - 财政年份:2023
- 资助金额:
$ 16.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combinatorics of Sharing Theorems, Stratifications, Bruhat Theory and Shimura Varieties
共享定理、分层、Bruhat 理论和 Shimura 簇的组合
- 批准号:
2247382 - 财政年份:2023
- 资助金额:
$ 16.05万 - 项目类别:
Standard Grant
New developments of limit theorems for random walks
随机游走极限定理的新发展
- 批准号:
23K12986 - 财政年份:2023
- 资助金额:
$ 16.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Empirical Tests of the Fundamental Theorems of Evolution and Natural Selection
职业:进化和自然选择基本定理的实证检验
- 批准号:
2240063 - 财政年份:2023
- 资助金额:
$ 16.05万 - 项目类别:
Continuing Grant
Positivity and vanishing theorems of direct image of relative canonical bundle
相关正则丛直像的正定理和消失定理
- 批准号:
23KJ0673 - 财政年份:2023
- 资助金额:
$ 16.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows