Collaborative Research: Learning to estimate and control gust-induced aerodynamics
合作研究:学习估计和控制阵风引起的空气动力学
基本信息
- 批准号:2247006
- 负责人:
- 金额:$ 37.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-15 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Large-amplitude fluid dynamic disturbances, or “gusts”, are a pervasive challenge for many energy and propulsion systems involving lifting surfaces, such as wind turbines, fixed and rotary-wing aircraft, and turbomachinery. Flow disturbances are often atmospheric, caused by terrain or weather, or introduced by the aerodynamics of other systems, as in a wind farm or a swarm of air vehicles. They become relatively stronger as the system's weight and size decrease or as weather events become more extreme. Gust encounters can significantly undermine the desired performance of the system, or at worst, cause catastrophic failure. Devising an automated strategy for large-amplitude gust mitigation is exceptionally challenging because the aerodynamic responses of the system to the gust and to actuation are highly dependent upon each other. Reinforcement learning (RL) is a promising approach for control of such complex fluid flows that circumvents many of the obstacles to previous approaches, but it is challenged by the burden of training: in a naïve application of RL, the algorithm must see a suitably large range of gust conditions and actuation responses during training to determine the best response for each encounter.It is very likely that RL training can be accelerated if the algorithm incorporates flow state information and a prediction of flow physics. The augmentation of RL with flow state information remains largely unexplored, primarily because of the challenges of practically inferring this information in real time with a small number of on-board sensors. Sensors provide a limited footprint of the flow around them, but this footprint can reveal most of the essential flow information. This program will leverage prior work in computational and experimental investigations of unsteady aerodynamics to advance the state of the art of flow state estimation from limited sensors and to close the gap on practical use of RL in fluid dynamics. The program will deploy experiments and computations to estimate coherent vortex structures in a flow during encounters of a fixed wing or rotating blade with a large-amplitude disturbance. With use of both computations and experiments with detailed flow measurements, the program will explore a wide range of crucial flow physics in gust encounters, including scaling effects across a wide range of Reynolds numbers, and to study the influence of wing/blade pitching on these encounters during RL training. This program will demonstrate, for the first time, reinforcement learning control of gust interactions in a laboratory setting.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大振幅流体动力扰动或“阵风”对于许多涉及升力面的能源和推进系统(例如风力涡轮机、固定翼和旋转翼飞机以及涡轮机械)来说是一个普遍的挑战。流动扰动通常是由地形或天气引起的大气扰动,或者是由其他系统的空气动力学引入的,例如在风电场或飞行器群中。随着系统重量和尺寸的减小或者天气事件变得更加极端,它们变得相对更强。阵风会严重破坏系统的预期性能,或者在最坏的情况下,导致灾难性故障。设计用于大幅阵风缓解的自动化策略非常具有挑战性,因为系统对阵风和驱动的空气动力响应高度依赖于彼此。强化学习 (RL) 是一种很有前途的控制此类复杂流体流动的方法,它克服了以前方法的许多障碍,但它受到训练负担的挑战:在 RL 的简单应用中,算法必须在训练期间看到适当大范围的阵风条件和驱动响应,以确定每次遭遇的最佳响应。如果算法包含流动状态,则 RL 训练很可能会加速 流动物理的信息和预测。强化学习与流状态信息的增强在很大程度上仍未得到探索,主要是因为使用少量机载传感器实际实时推断此信息存在挑战。传感器提供其周围流量的有限足迹,但该足迹可以揭示大多数基本流量信息。 该项目将利用之前在非定常空气动力学的计算和实验研究方面的工作,推进通过有限传感器进行流动状态估计的最新技术,并缩小强化学习在流体动力学中实际应用的差距。该计划将部署实验和计算,以估计固定翼或旋转叶片遇到大振幅扰动时流动中的相干涡流结构。通过使用详细的流量测量的计算和实验,该程序将探索阵风遭遇中的各种关键流动物理,包括各种雷诺数的缩放效应,并研究强化学习训练期间机翼/叶片俯仰对这些遭遇的影响。 该项目将首次展示实验室环境中阵风相互作用的强化学习控制。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anya Jones其他文献
Flow sensing through unsteady pressure measurements during transverse wing–gust encounters
- DOI:
10.1007/s00348-025-03992-4 - 发表时间:
2025-02-14 - 期刊:
- 影响因子:2.500
- 作者:
Antonios Gementzopoulos;Oliver Wild;Anya Jones - 通讯作者:
Anya Jones
Transcriptome responses to rhinovirus species A and C in asthmatic and healthy children
- DOI:
10.1016/j.waojou.2020.100342 - 发表时间:
2020-08-01 - 期刊:
- 影响因子:
- 作者:
Belinda Hales;Denise Anderson;Cibele Gaido;Anya Jones;Kim Carter;Ingrid Laing;Wayne Thomas;Anthony Bosco - 通讯作者:
Anthony Bosco
Role of vorticity distribution in the rise and fall of lift during a transverse gust encounter
横向阵风遭遇时涡度分布在升力上升和下降中的作用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.7
- 作者:
Antonios Gementzopoulos;Girguis Sedky;Anya Jones - 通讯作者:
Anya Jones
Navigating unsteady airwakes: Three-dimensionality and sideslip in strong transverse gust encounters
驾驭不稳定的气流:遭遇强横向阵风时的三维性和侧滑
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Oliver Wild;Antonios Gementzopoulos;Anya Jones - 通讯作者:
Anya Jones
Anya Jones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anya Jones', 18)}}的其他基金
EAGER: Time-Resolved Measurements and Control of Vortex Breakdown via Heat Addition
EAGER:通过加热进行涡流破坏的时间分辨测量和控制
- 批准号:
2152596 - 财政年份:2021
- 资助金额:
$ 37.12万 - 项目类别:
Standard Grant
Collaborative Research: Lift regulation via kinematic maneuvering in uncertain gusts
合作研究:在不确定的阵风中通过运动操纵进行升力调节
- 批准号:
2003951 - 财政年份:2020
- 资助金额:
$ 37.12万 - 项目类别:
Standard Grant
CAREER: Flow Physics of Aerodynamic Forcing in Unsteady Environments
职业:不稳定环境中空气动力强迫的流动物理学
- 批准号:
1553970 - 财政年份:2016
- 资助金额:
$ 37.12万 - 项目类别:
Standard Grant
UNS: Collaborative Research: Leading Edge Vortex Evolution on Compliant Biologically-Inspired Wings
UNS:合作研究:顺应性仿生机翼的前沿涡流演化
- 批准号:
1510962 - 财政年份:2015
- 资助金额:
$ 37.12万 - 项目类别:
Standard Grant
EAGER: Sediment Transport in the Wake of a Marine HydroKinetic Turbine
EAGER:海洋水力涡轮机后的沉积物输送
- 批准号:
1317382 - 财政年份:2013
- 资助金额:
$ 37.12万 - 项目类别:
Standard Grant
Graduate Research Fellowship Program
研究生研究奖学金计划
- 批准号:
0638765 - 财政年份:2006
- 资助金额:
$ 37.12万 - 项目类别:
Fellowship Award
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
$ 37.12万 - 项目类别:
Standard Grant
Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
- 批准号:
2330154 - 财政年份:2024
- 资助金额:
$ 37.12万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 37.12万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 37.12万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 37.12万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 37.12万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 37.12万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 37.12万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 37.12万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 37.12万 - 项目类别:
Standard Grant