CAREER: Synergistic physics-based and deep learning cardiovascular flow modeling
职业:基于协同物理和深度学习的心血管血流建模
基本信息
- 批准号:2247173
- 负责人:
- 金额:$ 50.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Accurate quantification of blood flow across different scales is crucial to our fundamental understanding of cardiovascular disease and clinical decision making. While computational and experimental blood flow modeling has seen tremendous progress, we still have difficulty generating reliable data. Low resolutions and unknown parameters overburden high fidelity modeling. Additionally, blood flow dynamics near the wall where disease localizes are hard to quantify due to thin boundary layers and challenges in near-wall transport modeling. Finally, the large datasets that blood flow models produce are difficult to efficiently store and interpret. This project will develop software that synergistically integrates novel deep learning and traditional physics-based modeling to address these issues. The software will promote the progress of scientific cardiovascular disease and fluid flow modeling research and ultimately advance national health. The project will create new education programs integrated with research to promote fluid flow computer modeling education by blending data analysis, visualization, and computer modeling. The education program will be integrated with regional initiatives to promote STEM participation in underrepresented groups.This CAREER program is built on four overarching goals. First, physics informed neural network (PINN) models will be used to overcome inherent blood flow modeling limitations. Second, the models will be used for gaining a physical understanding of blood flow patterns across different scales. Auxiliary PINN models will be defined to bridge blood flow patterns away and near the vessel wall and understand the minimal data collection necessary for near-wall blood flow modeling. Subsequently, a hybrid computational fluid dynamics (CFD) and PINN model will be developed for on-the-fly CFD and deep learning modeling. The goal is to compress and store the wealth of information that is generated and often ignored by CFD solvers and tackle difficult multiscale problems that challenge traditional CFD approaches. Finally, an education program called FAST (Fluids, Art, and StoryTelling!) will be developed to generate enthusiasm for integrated computer modeling and engineering education. The goal is to leverage the art of visualization and storytelling to show the hidden beauty in fluid mechanics computer modeling. This CAREER program will build a foundation for hybrid and complementary deep learning and physics-based modeling approaches that advance fundamental and transformative blood flow modeling research and will enable lifetime leadership in integrating research with education.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
准确量化不同尺度的血流量对我们对心血管疾病和临床决策的基本理解至关重要。虽然计算和实验血液流动模型已经取得了巨大的进步,但我们仍然难以生成可靠的数据。低分辨率和未知参数影响了高保真度建模。此外,由于薄边界层和近壁输运建模的挑战,疾病所在的壁面附近的血流动力学很难量化。最后,血流模型产生的大型数据集很难有效地存储和解释。该项目将开发软件,将新型深度学习和传统的基于物理的建模协同集成,以解决这些问题。该软件将促进心血管疾病和流体流动模型研究的科学进展,最终促进国民健康。该项目将创建新的教育项目,结合研究,通过混合数据分析、可视化和计算机建模来促进流体流动计算机建模教育。该教育计划将与区域倡议相结合,以促进代表性不足的群体参与STEM。这个职业计划建立在四个总体目标之上。首先,物理信息神经网络(PINN)模型将用于克服固有的血流建模限制。其次,这些模型将用于获得对不同尺度的血液流动模式的物理理解。将定义辅助的PINN模型,以桥接血管壁外和血管壁附近的血流模式,并了解近壁血流建模所需的最小数据收集。随后,将开发一种混合计算流体动力学(CFD)和PINN模型,用于实时CFD和深度学习建模。目标是压缩和存储CFD求解器经常忽略的生成的丰富信息,并解决挑战传统CFD方法的困难多尺度问题。最后,一项名为FAST(流体、艺术和讲故事!)的教育计划将被开发出来,以激发人们对综合计算机建模和工程教育的热情。我们的目标是利用可视化和讲故事的艺术来展示流体力学计算机建模中隐藏的美。该职业计划将为混合和互补的深度学习和基于物理的建模方法奠定基础,推进基础和变革性的血流建模研究,并将使研究与教育相结合的终身领导成为可能。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ensemble physics informed neural networks: A framework to improve inverse transport modeling in heterogeneous domains
集合物理通知神经网络:改进异构域逆向传输建模的框架
- DOI:10.1063/5.0150016
- 发表时间:2023
- 期刊:
- 影响因子:4.6
- 作者:Aliakbari, Maryam;Soltany Sadrabadi, Mohammadreza;Vadasz, Peter;Arzani, Amirhossein
- 通讯作者:Arzani, Amirhossein
Theory-guided physics-informed neural networks for boundary layer problems with singular perturbation
用于解决奇异扰动边界层问题的理论指导物理信息神经网络
- DOI:10.1016/j.jcp.2022.111768
- 发表时间:2023
- 期刊:
- 影响因子:4.1
- 作者:Arzani, Amirhossein;Cassel, Kevin W.;D'Souza, Roshan M.
- 通讯作者:D'Souza, Roshan M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amirhossein Arzani其他文献
Machine Learning for Cardiovascular Biomechanics Modeling: Challenges and Beyond
- DOI:
10.1007/s10439-022-02967-4 - 发表时间:
2022-04-20 - 期刊:
- 影响因子:5.400
- 作者:
Amirhossein Arzani;Jian-Xun Wang;Michael S. Sacks;Shawn C. Shadden - 通讯作者:
Shawn C. Shadden
Input parameterized physics informed neural networks for de noising, super-resolution, and imaging artifact mitigation in time resolved three dimensional phase-contrast magnetic resonance imaging
用于时间分辨三维相位对比磁共振成像中去噪、超分辨率和减轻成像伪影的输入参数化物理信息神经网络
- DOI:
10.1016/j.engappai.2025.110600 - 发表时间:
2025-06-15 - 期刊:
- 影响因子:8.000
- 作者:
Amin Pashaei Kalajahi;Hunor Csala;Zayeed Bin Mamun;Sangeeta Yadav;Omid Amili;Amirhossein Arzani;Roshan M. D’Souza - 通讯作者:
Roshan M. D’Souza
Transport and Mixing in Patient Specific Abdominal Aortic Aneurysms With Lagrangian Coherent Structures
具有拉格朗日相干结构的患者特异性腹主动脉瘤的运输和混合
- DOI:
10.1115/sbc2012-80475 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Amirhossein Arzani;S. Shadden - 通讯作者:
S. Shadden
Hemodynamics and Transport in Patient-specific Abdominal Aortic Aneurysms
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Amirhossein Arzani - 通讯作者:
Amirhossein Arzani
Flow topology and targeted drug delivery in cardiovascular disease.
心血管疾病中的流拓扑和靶向药物输送。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2.4
- 作者:
Sara S Meschi;Ali Farghadan;Amirhossein Arzani - 通讯作者:
Amirhossein Arzani
Amirhossein Arzani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amirhossein Arzani', 18)}}的其他基金
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
- 批准号:
2246916 - 财政年份:2023
- 资助金额:
$ 50.76万 - 项目类别:
Standard Grant
EAGER: Understanding complex wind-driven wildfire propagation patterns with a dynamical systems approach
EAGER:通过动力系统方法了解复杂的风驱动野火传播模式
- 批准号:
2330212 - 财政年份:2023
- 资助金额:
$ 50.76万 - 项目类别:
Standard Grant
CAREER: Synergistic physics-based and deep learning cardiovascular flow modeling
职业:基于协同物理和深度学习的心血管血流建模
- 批准号:
2143249 - 财政年份:2022
- 资助金额:
$ 50.76万 - 项目类别:
Continuing Grant
CRII: OAC: A computational framework for multiscale simulation of cardiovascular disease progression connecting cell-scale biology to organ-scale hemodynamics
CRII:OAC:将细胞尺度生物学与器官尺度血流动力学连接起来的心血管疾病进展多尺度模拟的计算框架
- 批准号:
2246911 - 财政年份:2022
- 资助金额:
$ 50.76万 - 项目类别:
Standard Grant
Collaborative Research: Enhanced 4D-Flow MRI through Deep Data Assimilation for Hemodynamic Analysis of Cardiovascular Flows
合作研究:通过深度数据同化增强 4D-Flow MRI 用于心血管血流的血流动力学分析
- 批准号:
2103434 - 财政年份:2021
- 资助金额:
$ 50.76万 - 项目类别:
Standard Grant
CRII: OAC: A computational framework for multiscale simulation of cardiovascular disease progression connecting cell-scale biology to organ-scale hemodynamics
CRII:OAC:将细胞尺度生物学与器官尺度血流动力学连接起来的心血管疾病进展多尺度模拟的计算框架
- 批准号:
1947559 - 财政年份:2020
- 资助金额:
$ 50.76万 - 项目类别:
Standard Grant
相似海外基金
AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
- 批准号:
2341110 - 财政年份:2024
- 资助金额:
$ 50.76万 - 项目类别:
Cooperative Agreement
Synergistic global change impacts on belowground biodiversity and carbon stocks in mountain ecosystems
全球变化对山区生态系统地下生物多样性和碳储量的协同影响
- 批准号:
NE/X017605/1 - 财政年份:2024
- 资助金额:
$ 50.76万 - 项目类别:
Fellowship
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036778/1 - 财政年份:2024
- 资助金额:
$ 50.76万 - 项目类别:
Research Grant
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036867/1 - 财政年份:2024
- 资助金额:
$ 50.76万 - 项目类别:
Research Grant
RII Track-4: NSF: Enabling Synergistic Multi-Robot Cooperation for Mobile Manipulation Beyond Individual Robotic Capabilities
RII Track-4:NSF:实现协同多机器人合作,实现超越单个机器人能力的移动操作
- 批准号:
2327313 - 财政年份:2024
- 资助金额:
$ 50.76万 - 项目类别:
Standard Grant
In vivo function-persistent polymersome nanoreactor with tumor-specific activation and safe clearance/metabolism for synergistic oxidation-chemo-immunotherapy
具有肿瘤特异性激活和安全清除/代谢作用的体内功能持久聚合物纳米反应器,用于协同氧化-化学-免疫治疗
- 批准号:
24K21109 - 财政年份:2024
- 资助金额:
$ 50.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Fungi-Biopolymer synergistic application in soil stabilisation
真菌-生物聚合物在土壤稳定中的协同应用
- 批准号:
EP/Y002202/1 - 财政年份:2024
- 资助金额:
$ 50.76万 - 项目类别:
Research Grant
CAREER: Enabling Scalable and Resilient Quantum Computer Architectures through Synergistic Hardware-Software Co-Design
职业:通过协同硬件软件协同设计实现可扩展且有弹性的量子计算机架构
- 批准号:
2340267 - 财政年份:2024
- 资助金额:
$ 50.76万 - 项目类别:
Continuing Grant
CAREER: Understanding the Synergistic Effects of Irradiation and Molten Salt Corrosion on NiCr Alloys
职业:了解辐照和熔盐腐蚀对镍铬合金的协同效应
- 批准号:
2340019 - 财政年份:2024
- 资助金额:
$ 50.76万 - 项目类别:
Continuing Grant
Metachronous synergistic effects of preoperative viral therapy and postoperative adjuvant immunotherapy via long-term antitumor immunity
术前病毒治疗和术后辅助免疫治疗通过长期抗肿瘤免疫产生异时协同效应
- 批准号:
23K08213 - 财政年份:2023
- 资助金额:
$ 50.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)