Nonlinear and noncommutative perspectives on Banach space theory

Banach 空间理论的非线性和非交换视角

基本信息

  • 批准号:
    1400588
  • 负责人:
  • 金额:
    $ 9.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

For many centuries the classical mathematical tools of basic calculus and algebra have been widely used in the study of many real-world phenomena. However there are two important assumptions that play a crucial role in their usefulness that do not always hold. First, calculus can only be used when, like the surface of the earth, the quantities of interest "appear to be flat" from up close. In addition, many properties in algebra use the fact that when multiplying numbers, changing the order of the factors does not affect their product. Unfortunately there many real-world situations that cannot be modeled adequately under these assumptions. For example, when an online merchant recommends a particular product based on previous purchases, the information that is relevant consists of quantities whose variations can be more accurately described as "jumps": whether or not we buy a particular product causes a sudden change in quantity sold. In quantum physics, or physics at nanoscopic scales, the order in which factors are multiplied can affect the product. The PI proposes in this project to develop modern versions of existing mathematical tools in the absence of those seemingly simple assumptions. The particular tools that will be considered are relevant for computer science and quantum physics.The PI will carry on a program that studies the counterparts of various aspects of Banach space theory (mainly related to study of ideals of operators and approximation properties) in the context of metric spaces and operator spaces. This will be done by combining methods and techniques from the local theory of Banach spaces with modern nonlinear and noncommutative approaches. The nonlinear aspects include using Lipschitz-free spaces to investigate whether or not certain approximation properties for Banach spaces are invariant under Lipschitz isomorphisms; and also answering quantitative questions about embedding finite metric spaces into Hilbert spaces. On the noncommutative side, the project aims at proving composition theorems for certain classes of mappings acting between operator spaces, constructing almost Euclidean subspaces of finite-dimensional spaces of trace-class operators, and defining a Radon-Nikodym property for operator spaces.
几个世纪以来,基础微积分和代数等经典数学工具被广泛用于研究许多现实世界的现象。然而,有两个重要的假设对它们的有用性起着至关重要的作用,但它们并不总是成立的。首先,微积分只有在像地球表面一样,从近距离观察时才能被使用。此外,代数中的许多性质利用了这样一个事实,即当乘数时,改变因子的顺序不会影响它们的乘积。不幸的是,在这些假设下,许多真实世界的情况都不能得到充分的模拟。例如,当在线商家根据以前的购买推荐某一特定产品时,相关信息由数量组成,其变化可以更准确地描述为“跳跃”:我们购买某一特定产品是否会导致销售量的突然变化。在量子物理学或纳米尺度的物理学中,因素相乘的顺序可能会影响乘积。PI在这个项目中提议,在没有那些看似简单的假设的情况下,开发现有数学工具的现代版本。将考虑的特定工具与计算机科学和量子物理相关。PI将进行一项计划,在度量空间和算子空间的背景下研究Banach空间理论的各个方面的对应关系(主要涉及算子理想和逼近性质的研究)。这将通过将Banach空间局部理论的方法和技术与现代非线性和非对易方法相结合来实现。非线性方面包括利用无Lipschitz空间来研究Banach空间的某些逼近性质在Lipschitz同构下是否不变;以及回答关于将有限度量空间嵌入到Hilbert空间的定量问题。在非对易方面,该项目旨在证明作用于算子空间之间的某些映射类的合成定理,构造有限维空间的迹类算子的几乎欧几里德子空间,并定义算子空间的Radon-Nikodym性质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Javier Chavez-Dominguez其他文献

Javier Chavez-Dominguez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Javier Chavez-Dominguez', 18)}}的其他基金

Quantum Perspectives in Banach and Metric Spaces
Banach 和度量空间中的量子视角
  • 批准号:
    2247374
  • 财政年份:
    2023
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
Banach Spaces with a Focus on Sobolev-Style Spaces, Frame Theory, and Quantum Graphs
Banach 空间,重点关注 Sobolev 式空间、框架理论和量子图
  • 批准号:
    1900985
  • 财政年份:
    2019
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Noncommutative Geometry and Analysis
会议:非交换几何与分析
  • 批准号:
    2350508
  • 财政年份:
    2024
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
  • 批准号:
    23K03064
  • 财政年份:
    2023
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Model theory of operators and noncommutative function theory
算子模型论和非交换函数论
  • 批准号:
    23KJ1070
  • 财政年份:
    2023
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
LEAPS-MPS: Noncommutative Geometry and Topology of Quantum Metrics
LEAPS-MPS:量子度量的非交换几何和拓扑
  • 批准号:
    2316892
  • 财政年份:
    2023
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Standard Grant
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
  • 批准号:
    2302447
  • 财政年份:
    2023
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Continuing Grant
Analysis of noncommutative rational functions in terms of free probability
用自由概率分析非交换有理函数
  • 批准号:
    22KJ1817
  • 财政年份:
    2023
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Topics in noncommutative algebra 2022: homological regularities
2022 年非交换代数专题:同调正则
  • 批准号:
    2302087
  • 财政年份:
    2023
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Continuing Grant
Noncommutative analysis for self-similar structure
自相似结构的非交换分析
  • 批准号:
    DP220101631
  • 财政年份:
    2022
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Discovery Projects
Noncommutative statistical mechanics: probability at the confluence
非交换统计力学:汇合处的概率
  • 批准号:
    EP/V048902/2
  • 财政年份:
    2022
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Research Grant
Noncommutative Algebraic Geometry
非交换代数几何
  • 批准号:
    RGPIN-2017-04623
  • 财政年份:
    2022
  • 资助金额:
    $ 9.14万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了