Geometry of analytic and algebraic varieties
解析几何和代数簇
基本信息
- 批准号:2301374
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project is in the field of algebraic geometry, one of the core areas of pure mathematics whose roots date back to the ancient Greeks. At its heart, algebraic geometry studies the geometry of the solution of polynomial equations. These are the simplest possible equations and so, not surprisingly, they play an important role in almost any scientific discipline. In particular algebraic geometry has close ties with differential and analytic geometry, commutative algebra, topology, number theory, physics, theoretical computer science, cryptography, and many areas of applied mathematics. The most fundamental problem in algebraic geometry is to classify all geometric objects defined by polynomial equations. The minimal model program is the most successful approach to this classification program and has recently had extraordinary success in classifying complex varieties, i.e. solution sets consisting of complex numbers. It is hoped that these techniques will extend to other contexts such as varieties defined over fields of positive characteristics and to complex analytic varieties. The PI will involve graduate students and post-docs in various aspects of this project.This project will generalize the results of the minimal model program over the complex numbers to the case of varieties over algebraically closed fields of positive characteristic (and to the case of mixed characteristics) as well as the case of Kahler varieties. In particular, the PI will show that the minimal model program holds for compact Kahler klt threefolds and fourfolds and will develop the theory of generalized klt Kahler varieties. The PI will investigate the minimal model program for threefolds in characteristic 3 and the pluricanonical maps of projective 3-folds over algebraically closed fields of large characteristics. The minimal model program in mixed characteristic will also be developed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个研究项目是在代数几何领域,这是纯数学的核心领域之一,其根源可以追溯到古希腊。代数几何的核心是研究多项式方程解的几何形式。这些是最简单的方程,因此,毫不奇怪,它们在几乎任何科学学科中都发挥着重要作用。特别是代数几何与微分和解析几何、交换代数、拓扑学、数论、物理学、理论计算机科学、密码学和许多应用数学领域有着密切的联系。代数几何中最基本的问题是对所有由多项式方程定义的几何对象进行分类。最小模型程序是这种分类程序中最成功的方法,最近在分类复杂品种(即由复数组成的解集)方面取得了非凡的成功。希望这些技术将扩展到其他环境,如在正特征域上定义的品种和复杂的分析品种。研究生和博士后将参与该项目的各个方面。这个项目将把复数上的最小模型程序的结果推广到正特征的代数闭域上的品种(以及混合特征的情况)以及Kahler品种的情况。特别是,PI将表明最小模型程序适用于紧Kahler klt的三倍和四倍,并将发展广义klt Kahler变分的理论。PI将研究特征3的三倍的最小模型程序和大特征代数闭域上射影三倍的多正则映射。本文还将开发混合特性的最小模型程序。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Hacon其他文献
Termination of (many) 4-dimensional log flips
终止(多次)4 维日志翻转
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Valery Alexeev;Christopher Hacon;Yujiro Kawamata - 通讯作者:
Yujiro Kawamata
Japanese Cities and Urbanization IGU-Commission
日本城市和城市化 IGU 委员会
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Valery Alexeev;Christopher Hacon;Yujiro Kawamata;佐藤 博樹(中村圭介・連合総合生活開発研究所編);小林 敬一・小澤 敬;Kazuhiko YAGO;Masateru Hino - 通讯作者:
Masateru Hino
Christopher Hacon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Hacon', 18)}}的其他基金
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952522 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Birational Algebraic Geometry in Characteristic Zero and Positive Characteristic
特征零和正特征的双有理代数几何
- 批准号:
1801851 - 财政年份:2018
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Birational geometry of algebraic varieties
代数簇的双有理几何
- 批准号:
1300750 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Birational geometry of higher dimensional varieties
高维簇的双有理几何
- 批准号:
0757897 - 财政年份:2008
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Birational geometry of complex projective varieties
复射影簇的双有理几何
- 批准号:
0456363 - 财政年份:2005
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似海外基金
Analytic and Algebraic Methods in Discrete Geometry
离散几何中的解析和代数方法
- 批准号:
2127650 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Analytic and Algebraic Methods in Discrete Geometry
离散几何中的解析和代数方法
- 批准号:
1953946 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Tropical and nonarchimedean analytic methods in algebraic geometry
代数几何中的热带和非阿基米德解析方法
- 批准号:
2001502 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Model Theory: Connecting Algebraic, Analytic, and Diophantine Geometry Through Definability
模型理论:通过可定义性连接代数、解析和丢番图几何
- 批准号:
1800492 - 财政年份:2018
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Tropical and Non-Archimedean Analytic Methods in Algebraic Geometry
代数几何中的热带和非阿基米德解析方法
- 批准号:
1901840 - 财政年份:2018
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Tropical and Non-Archimedean Analytic Methods in Algebraic Geometry
代数几何中的热带和非阿基米德解析方法
- 批准号:
1702428 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Analytic Methods in Complex Algebraic Geometry
复杂代数几何中的解析方法
- 批准号:
1707661 - 财政年份:2017
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Homotopical structures in algebraic, analytic, and equivariant geometry
代数、解析和等变几何中的同伦结构
- 批准号:
DP150103442 - 财政年份:2015
- 资助金额:
$ 33万 - 项目类别:
Discovery Projects
Algebraic and analytic integral geometry
代数和解析积分几何
- 批准号:
1406252 - 财政年份:2014
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Analytic geometry and algebraic geometry of reductive groups
还原群的解析几何和代数几何
- 批准号:
237910448 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Research Grants














{{item.name}}会员




