Model Theory: Connecting Algebraic, Analytic, and Diophantine Geometry Through Definability

模型理论:通过可定义性连接代数、解析和丢番图几何

基本信息

  • 批准号:
    1800492
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Important mathematical structures can often be understood from very different perspectives, either by analyzing them with algebraic or analytic formulas or by regarding them geometrically. This dual algebraic/geometric view is applied in many branches of mathematics, especially for the study of algebraic equations involving numbers (under the name of Diophantine geometry), the study of solutions to polynomial equations (under the name of algebraic geometry), or the study of the possible algebraic relations among solutions to systems of differential or difference equations (under the names of differential algebraic geometry or difference algebraic geometry, respectively), among others. In practice, some of the questions considered in these areas suffer from extreme complexity inherited from their connection to number theory or to even more complicated domains. Work in mathematical logic has elucidated the boundary between those complicated theories and those admitting a tame, geometric theory. This research project aims to extend the class of theories for which a tame geometry can be established and to use these results from mathematical logic to answer questions from the target domains. This research project studies the connections between geometries of various kinds, including algebraic, differential, Diophantine, and analytic geometries, through the model-theoretic lens of definability in suitable theories. Mathematical theories as diverse as those of partial differential equations, difference equations, perfectoid spaces, formal geometry, algebraic dynamics, and homogenous dynamics will be studied. Technically, methods including geometric stability theory as applied to differentially closed fields, o-minimality, and quantifier elimination for valued differential fields and analytic difference rings will be applied for the purpose of answering questions internal to model theory (such as proving or refuting the trichotomy principle for regular types in differentially closed fields with several commuting derivations) and for applications to problems in functional transcendence, dynamics, and Diophantine geometry. It is anticipated that the work will have applications to the structure of algebraic differential equations, the arithmetic of dynamical systems, and mathematical physics, as well as in other areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
重要的数学结构通常可以从非常不同的角度来理解,要么通过代数或解析公式来分析它们,要么通过几何来考虑它们。 这种代数/几何对偶观在数学的许多分支中都有应用,特别是对于涉及数的代数方程的研究(在丢番图几何的名称下),研究多项式方程的解(以代数几何的名义),研究微分或差分方程系统解之间可能的代数关系的学科(分别以微分代数几何或差分代数几何的名称)等。在实践中,这些领域中考虑的一些问题由于与数论或更复杂的领域的联系而具有极端的复杂性。数理逻辑的工作已经阐明了那些复杂理论和那些接受驯服的几何理论之间的界限。本研究项目旨在扩展可以建立驯服几何的理论类别,并使用这些来自数理逻辑的结果来回答目标领域的问题。本研究计画透过适当理论中可定义性的模型论透镜,研究各种几何学之间的关联,包括代数几何、微分几何、丢番图几何与解析几何。 数学理论作为不同的偏微分方程,差分方程,perfectoid空间,形式几何,代数动力学和齐次动力学将被研究。从技术上讲,方法包括几何稳定性理论,适用于差分封闭领域,o-最小,值微分域和解析差环的量词消去将被应用于回答模型论内部的问题(例如证明或反驳微分闭域中正则型的可交换性原理,其中有几个可交换导子)以及应用于函数超越、动力学和丢番图几何中的问题。预计这项工作将应用于代数微分方程的结构、动力系统的算术和数学物理以及其他领域。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A variant of the Mordell–Lang conjecture
莫德尔·朗猜想的一种变体
  • DOI:
    10.4310/mrl.2019.v26.n5.a7
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Ghioca, Dragos;Hu, Fei;Scanlon, Thomas;Zannier, Umberto
  • 通讯作者:
    Zannier, Umberto
The Logical Complexity of Finitely Generated Commutative Rings
有限生成交换环的逻辑复杂性
  • DOI:
    10.1093/imrn/rny023
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Aschenbrenner, Matthias;Khélif, Anatole;Naziazeno, Eudes;Scanlon, Thomas
  • 通讯作者:
    Scanlon, Thomas
SOLVING DIFFERENCE EQUATIONS IN SEQUENCES: UNIVERSALITY AND UNDECIDABILITY
  • DOI:
    10.1017/fms.2020.14
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Pogudin;T. Scanlon;M. Wibmer
  • 通讯作者:
    G. Pogudin;T. Scanlon;M. Wibmer
Elimination of unknowns for systems of algebraic differential-difference equations
Berezin integral as a limit of Riemann sum
Berezin 积分作为黎曼和的极限
  • DOI:
    10.1063/1.5144877
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Scanlon, Thomas;Sverdlov, Roman
  • 通讯作者:
    Sverdlov, Roman
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Scanlon其他文献

Dialysis After Left Ventricular Assist Device Implantation
  • DOI:
    10.1016/j.cardfail.2020.09.442
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Annie Tsay;Lori Ober;Behzad Soleimani;Robert Dowling;Jordan Shouey;Omaima Ali;Thomas Scanlon;Robert Oblender;Howard Joel Eisen
  • 通讯作者:
    Howard Joel Eisen
Groupes définissables dans des expansions de théories stables Ampleur et notions relatives
理论稳定和相关概念扩展中的可定义群体
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Jordan;A. Martin;E. Bouscaren;David Evans;B. Poizat;Thomas Scanlon
  • 通讯作者:
    Thomas Scanlon
Public Key Cryptosystems Based on Drinfeld Modules Are Insecure
  • DOI:
    10.1007/s00145-001-0004-9
  • 发表时间:
    2001-04-09
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Thomas Scanlon
  • 通讯作者:
    Thomas Scanlon
Algebraic equations on the adèlic closure of a Drinfeld module
  • DOI:
    10.1007/s11856-012-0072-6
  • 发表时间:
    2012-05-29
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Dragos Ghioca;Thomas Scanlon
  • 通讯作者:
    Thomas Scanlon
Algorithm for finding new identifiable reparametrizations of parametric ODEs
寻找参数常微分方程新的可识别重参数化的算法
  • DOI:
    10.48550/arxiv.2310.03057
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Meshkat;Alexey Ovchinnikov;Thomas Scanlon
  • 通讯作者:
    Thomas Scanlon

Thomas Scanlon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Scanlon', 18)}}的其他基金

Travel: Model Theory of Valued Fields at CIRM
旅行:CIRM 有价值领域的模型理论
  • 批准号:
    2322918
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Algebraicity, Transcendence, and Decidability in Arithmetic and Geometry through Model Theory
通过模型理论研究算术和几何中的代数性、超越性和可判定性
  • 批准号:
    2201045
  • 财政年份:
    2022
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
CAREER: Model Theory and Homogeneous Structures
职业:模型理论和齐次结构
  • 批准号:
    1848562
  • 财政年份:
    2019
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
From Permutation Groups to Model Theory
从置换群到模型论
  • 批准号:
    1824208
  • 财政年份:
    2018
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Model Theory of Differential and Difference Equations with Applications
FRG:协作研究:微分方程和差分方程的模型理论及其应用
  • 批准号:
    1760413
  • 财政年份:
    2018
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Conference/Workshop: Trimester on Model Theory, Combinatorics, and Valued Fields; Spring, 2018; Paris, France
会议/研讨会:模型理论、组合学和值域的三个学期;
  • 批准号:
    1744167
  • 财政年份:
    2017
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Arithmetic and algebraic differentiation: Witt vectors, number theory, and differential algebra
算术和代数微分:维特向量、数论和微分代数
  • 批准号:
    1502219
  • 财政年份:
    2015
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Model Theory, Difference/Differential Equations, and Applications
模型理论、差分/微分方程和应用
  • 批准号:
    1500920
  • 财政年份:
    2015
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Model Theory of Generalized Differential Equations and Diophantine Geometry
广义微分方程模型论与丢番图几何
  • 批准号:
    1363372
  • 财政年份:
    2014
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Algebraic Model Theory
代数模型理论
  • 批准号:
    1001550
  • 财政年份:
    2010
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of Learning Materials Connecting Theory and Practice for Teachers to Improve Student Engagement
为教师开发连接理论与实践的学习材料以提高学生的参与度
  • 批准号:
    23K02731
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Connecting Parton Cascade to QCDS Shear Viscosity for a Dynamical Model of Finite Temperature Kinetic Theory
将 Parton Cascade 连接到 QCDS 剪切粘度以建立有限温度动力学理论的动态模型
  • 批准号:
    2310021
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Test analysis methodology connecting classical test theory and item response theory
连接经典测试理论和项目反应理论的测试分析方法
  • 批准号:
    22K18633
  • 财政年份:
    2022
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
New Pathways Connecting Theory and Experiment
连接理论和实验的新途径
  • 批准号:
    2210390
  • 财政年份:
    2022
  • 资助金额:
    $ 22万
  • 项目类别:
    Continuing Grant
Connecting Model Theory and Function Spaces: New Applications in Analysis and Machine Learning
连接模型理论和函数空间:分析和机器学习的新应用
  • 批准号:
    555749-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
2022 GRC / GRS on Colloidal, Macromolecular, and Polyelectrolyte Solutions: Sub-title: “Connecting theory and simulations to experiments and applications.”
2022 年关于胶体、高分子和聚电解质解决方案的 GRC / GRS:副标题:“将理论和模拟与实验和应用联系起来。”
  • 批准号:
    2134789
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Connecting theory with data in host-parasite evolution
将宿主-寄生虫进化中的理论与数据联系起来
  • 批准号:
    RGPIN-2016-05488
  • 财政年份:
    2021
  • 资助金额:
    $ 22万
  • 项目类别:
    Discovery Grants Program - Individual
The reconstruction of prescriptive educational theory by connecting it with political science
与政治学相结合重建规范性教育理论
  • 批准号:
    20H01638
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Connecting theory with data in host-parasite evolution
将宿主-寄生虫进化中的理论与数据联系起来
  • 批准号:
    RGPIN-2016-05488
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Discovery Grants Program - Individual
Connecting Model Theory and Function Spaces: New Applications in Analysis and Machine Learning
连接模型理论和函数空间:分析和机器学习的新应用
  • 批准号:
    555749-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 22万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了