Tropical and nonarchimedean analytic methods in algebraic geometry
代数几何中的热带和非阿基米德解析方法
基本信息
- 批准号:2001502
- 负责人:
- 金额:$ 35.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algebraic geometry studies solution sets of systems of polynomial equations. For instance, lines are solution sets of linear polynomial equations, while circles and hyperbolas are solution sets to quadratic polynomial equations, and their study goes back to the ancient Greeks. The solution sets of systems of many polynomial equations in many variables often have beautiful and complicated geometry. The PI will apply new and modern techniques to answer questions of classical interest in the field of algebraic geometry, and to address long standing open problems about the geometry of curves defined by polynomial equations. This project provides research training opportunities for graduate students.Over a nonarchimedean field, one can split the problem of understanding such solution sets into two parts. What are the possible valuations of solutions? And what are the solutions with a given valuation? The set of valuations of solutions has a rich combinatorial and polyhedral structure, and is the primary object of study in tropical geometry; the solutions with a given valuation can be studied via nonarchimedean analytic geometry. Recent developments in these fields make it possible to resolve subtle questions about the geometry of the actual solution set using new and innovative tools and techniques. This project will refine, abstract, and generalize these new methods and explore deeper applications to open problems in algebraic geometry.The PI will use tropical and nonarchimedean methods to continue his work on refined curve counting, and on unstable cohomology of moduli spaces of curves, proceeding beyond the top graded piece of the weight filtration to examine the full weight-graded cohomology ring. He will also initiate an analogous study of the weight graded cohomology of the moduli space of abelian varieties, using the topology of moduli spaces of tropical abelian varieties and the combinatorial algebra of complexes built out of unimodular matroids and perfect quadratic forms. Additional projects will attack the motivic, p-adic, and topological monodromy conjectures for Newton nondegenerate singularities, using the combinatorics of relative local h-polynomials and Stapledon’s formulas for monodromy, and attempt to resolve outstanding (and mutually contradictory) conjectures of Kontsevich and Morita in the homology of commutative graph complexes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数几何研究多项式方程组的解集。 例如,直线是线性多项式方程的解集,而圆和双曲线是二次多项式方程的解集,它们的研究可以追溯到古希腊人。多元多项式方程组的解集往往具有优美而复杂的几何形状。PI将应用新的和现代的技术来回答代数几何领域的经典问题,并解决长期存在的关于多项式方程定义的曲线几何的开放问题。这个计画提供研究训练的机会给研究生。在一个非阿基米德的领域中,我们可以将了解这类解集的问题分成两部分。解决方案的可能估值是什么? 在给定估值的情况下,解是什么? 解的赋值集具有丰富的组合和多面体结构,是热带几何的主要研究对象;具有给定赋值的解可以通过非阿基米德解析几何来研究。 这些领域的最新发展使人们有可能使用新的和创新的工具和技术来解决实际解决方案集的几何形状的微妙问题。这个项目将提炼、抽象和推广这些新方法,并探索更深层次的应用,以解决代数几何中的开放问题。PI将使用热带和nonarchimedean方法继续他在精细曲线计数和曲线模空间的不稳定上同调方面的工作,超越权过滤的顶级部分,研究全权分级上同调环。他还将启动一个类似的研究权重分级上同调的模空间的阿贝尔品种,使用拓扑结构的模空间的热带阿贝尔品种和组合代数的复合物建立了unimodular拟阵和完美的二次形式。其他项目将攻击牛顿非退化奇点的motivic,p-adic和拓扑monodromy代数,使用相对局部h-多项式的组合学和Stapledon的monodromy公式,并试图解决悬而未决的(相互矛盾)Kontsevich和Morita在交换图复形的同源性方面的贡献。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tropical moduli spaces as symmetric Δ$\Delta$‐complexes
作为对称 Î$Delta$âcomplex 的热带模空间
- DOI:10.1112/blms.12570
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Allcock, Daniel;Corey, Daniel;Payne, Sam
- 通讯作者:Payne, Sam
Compactified Jacobians as Mumford models
压缩雅可比行列式作为 Mumford 模型
- DOI:10.1090/tran/8875
- 发表时间:2023
- 期刊:
- 影响因子:1.3
- 作者:Christ, Karl;Payne, Sam;Shen, Tif
- 通讯作者:Shen, Tif
Equivariant Grothendieck–Riemann–Roch andlocalization in operational K-theory
等变格洛腾迪克-黎曼-罗赫和可操作 K 理论中的局域化
- DOI:10.2140/ant.2021.15.341
- 发表时间:2021
- 期刊:
- 影响因子:1.3
- 作者:Anderson, Dave;Gonzales, Richard;Payne, Sam
- 通讯作者:Payne, Sam
Tropical curves, graph complexes, and top weight cohomology of $\mathcal {M}_g$
$mathcal {M}_g$ 的热带曲线、复合图和顶重上同调
- DOI:10.1090/jams/965
- 发表时间:2021
- 期刊:
- 影响因子:3.9
- 作者:Chan, Melody;Galatius, Søren;Payne, Sam
- 通讯作者:Payne, Sam
Bitangents to plane quartics via tropical geometry: rationality, $$\mathbb {A}^1$$-enumeration, and real signed count
通过热带几何到平面四次曲线的双切线:理性、$$mathbb {A}^1$$-枚举和实数有符号数
- DOI:10.1007/s40687-023-00383-1
- 发表时间:2023
- 期刊:
- 影响因子:1.2
- 作者:Markwig, Hannah;Payne, Sam;Shaw, Kris
- 通讯作者:Shaw, Kris
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sam Payne其他文献
emK/em-rings of wonderful varieties and matroids
美妙的簇和拟阵的 emK/em 环
- DOI:
10.1016/j.aim.2024.109554 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:1.500
- 作者:
Matt Larson;Shiyue Li;Sam Payne;Nicholas Proudfoot - 通讯作者:
Nicholas Proudfoot
極小モデル理論の新展開
最小模型理论的新进展
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Osamu Fujino;Sam Payne;Osamu Fujino;藤野 修;藤野 修;藤野 修;Osamu Fujino;藤野 修;藤野 修;藤野 修;藤野 修 - 通讯作者:
藤野 修
Bidding Chess
- DOI:
10.1007/s00283-009-9057-7 - 发表时间:
2009-06-19 - 期刊:
- 影响因子:0.400
- 作者:
Jay Bhat;Sam Payne - 通讯作者:
Sam Payne
The Sn-equivariant top weight Euler characteristic of Mg,n
Mg,n 的 Sn 等变顶重欧拉特征
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1.7
- 作者:
Melody Chan;Carel Faber;Soren Galatius;Sam Payne - 通讯作者:
Sam Payne
On the Kleiman-Mori cone
关于克莱曼-莫里锥
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Osamu Fujino;Sam Payne;Osamu Fujino - 通讯作者:
Osamu Fujino
Sam Payne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sam Payne', 18)}}的其他基金
Dual complexes and weight filtrations: Applications to cohomology of moduli spaces and invariants of singularities
对偶复形和权重过滤:模空间上同调和奇点不变量的应用
- 批准号:
2302475 - 财政年份:2023
- 资助金额:
$ 35.97万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Matroids, Graphs, and Algebraic Geometry
FRG:协作研究:拟阵、图和代数几何
- 批准号:
2053261 - 财政年份:2021
- 资助金额:
$ 35.97万 - 项目类别:
Standard Grant
Tropical Geometry and Moduli Spaces: Satellite Conference of the 2018 International Congress of Mathematicians (ICM)
热带几何与模空间:2018年国际数学家大会(ICM)卫星会议
- 批准号:
1760342 - 财政年份:2018
- 资助金额:
$ 35.97万 - 项目类别:
Standard Grant
Tropical and Non-Archimedean Analytic Methods in Algebraic Geometry
代数几何中的热带和非阿基米德解析方法
- 批准号:
1901840 - 财政年份:2018
- 资助金额:
$ 35.97万 - 项目类别:
Continuing Grant
Tropical and Non-Archimedean Analytic Methods in Algebraic Geometry
代数几何中的热带和非阿基米德解析方法
- 批准号:
1702428 - 财政年份:2017
- 资助金额:
$ 35.97万 - 项目类别:
Continuing Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series, April 25-27, 2014
合作研究:AGNES:代数几何东北系列,2014 年 4 月 25-27 日
- 批准号:
1360740 - 财政年份:2014
- 资助金额:
$ 35.97万 - 项目类别:
Continuing Grant
CAREER: Tropical and Nonarchimedean Analytic Methods in Algebraic Geomoetry
职业:代数几何中的热带和非阿基米德分析方法
- 批准号:
1149054 - 财政年份:2012
- 资助金额:
$ 35.97万 - 项目类别:
Continuing Grant
Geometrie Algebrique en Liberte, GAeL
自由几何代数,GAeL
- 批准号:
1101380 - 财政年份:2011
- 资助金额:
$ 35.97万 - 项目类别:
Continuing Grant
Combinatorial and nonarchimedean methods in algebraic geometry
代数几何中的组合和非阿基米德方法
- 批准号:
1068689 - 财政年份:2011
- 资助金额:
$ 35.97万 - 项目类别:
Continuing Grant
相似海外基金
RUI: Arboreal Galois Groups and Nonarchimedean Dynamics
RUI:树栖伽罗瓦群和非阿基米德动力学
- 批准号:
2101925 - 财政年份:2021
- 资助金额:
$ 35.97万 - 项目类别:
Standard Grant
Nonarchimedean Analysis, Geometry, and Computation
非阿基米德分析、几何和计算
- 批准号:
1802161 - 财政年份:2018
- 资助金额:
$ 35.97万 - 项目类别:
Continuing Grant
Nonarchimedean geometry, algebraic, arithmetic dynamics and related fields
非阿基米德几何、代数、算术动力学及相关领域
- 批准号:
15K04817 - 财政年份:2015
- 资助金额:
$ 35.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonarchimedean geometry and its application to arithmetic of algebraic varieties
非阿基米德几何及其在代数簇算术中的应用
- 批准号:
26800012 - 财政年份:2014
- 资助金额:
$ 35.97万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
CAREER: Tropical and Nonarchimedean Analytic Methods in Algebraic Geomoetry
职业:代数几何中的热带和非阿基米德分析方法
- 批准号:
1149054 - 财政年份:2012
- 资助金额:
$ 35.97万 - 项目类别:
Continuing Grant
Combinatorial and nonarchimedean methods in algebraic geometry
代数几何中的组合和非阿基米德方法
- 批准号:
1068689 - 财政年份:2011
- 资助金额:
$ 35.97万 - 项目类别:
Continuing Grant