ERI: Integration of Computational Modeling and Machine Learning for Clot Mechanics

ERI:凝块力学计算建模和机器学习的集成

基本信息

  • 批准号:
    2301736
  • 负责人:
  • 金额:
    $ 19.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This Engineering Research Initiation (ERI) award will support research that will contribute new knowledge related to the mechanics of blood clots. A clot is a solid substance that can form spontaneously from the cells and proteins of blood. Clots are essential to stopping bleeding from a wound, but also can be dangerous if they improperly block a blood vessel causing, for example, a heart attack or stroke. Decades of research have led to an understanding of the biochemistry and cell biology of clot formation, but how clots are affected by the mechanical forces of blood flow is not well understood. Clots that cause heart attack and stroke often form in flowing blood, thus understanding how the flow forces affect clot formation may be important to preventing or treating these conditions. This research will develop a model for clotting. The project will use artificial intelligence to make a generalized predictive model of clot strength using clot composition data. The research will benefit society by enabling patient-specific clot modeling with the goal of improving personalized medicine. The project spans several disciplines including mechanical engineering, computational science, biomedical engineering, and art and design. The multi-disciplinary approach will be used as part of an outreach effort to broaden participation of underrepresented groups in research.The objective of this research is to characterize clot mechanical response under external load through integration of a novel mesoscopic model and machine learning to extract its strength, toughness, and dynamic modulus. The novel model will consider clot components such as red blood cells, platelets, fibrin networks, and plasma. The specific aims of the research are to develop and validate a multiphysics model for clot mechanics based on a hybrid particle-continuum approach with heterogeneous components and apply machine learning models to predict clot strength, toughness, and dynamic modulus under various compositions using neural networks. The project will advance our knowledge of how the interplay between individual components, including the time-dependent platelet contraction, contribute to the overall mechanical response of the clot and also to predict the clot mechanical properties with given composition by developing novel open-source high performance computing mesoscale models and machine learning models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该工程研究启动(ERI)奖将支持将贡献与血凝块力学相关的新知识的研究。血块是一种固体物质,可以由血液中的细胞和蛋白质自发形成。凝块对止血至关重要,但如果它们不恰当地阻塞血管,也可能是危险的,例如,心脏病发作或中风。几十年的研究已经使人们了解了凝块形成的生物化学和细胞生物学,但是凝块是如何受到血流机械力的影响还不是很清楚。导致心脏病发作和中风的血块通常是在流动的血液中形成的,因此了解血流如何影响血块的形成对预防或治疗这些疾病可能很重要。这项研究将开发一种凝血模型。该项目将使用人工智能根据血块成分数据建立血块强度的广义预测模型。这项研究将造福社会,使患者特定的凝块建模,以提高个性化医疗的目标。该项目涉及多个学科,包括机械工程、计算科学、生物医学工程、艺术与设计。多学科方法将被用作扩大代表性不足群体参与研究的外联努力的一部分。本研究的目的是通过集成一种新的介观模型和机器学习来提取其强度、韧性和动态模量,来表征外部负载下凝块的力学响应。新模型将考虑凝块成分,如红细胞、血小板、纤维蛋白网络和血浆。该研究的具体目标是开发和验证基于混合颗粒-连续体方法的血块力学多物理场模型,并使用机器学习模型来预测不同成分下的血块强度、韧性和动态模量。该项目将提高我们对单个组件之间的相互作用的认识,包括时间依赖性血小板收缩,如何促进凝块的整体机械响应,并通过开发新型开源高性能计算中尺度模型和机器学习模型来预测给定成分的凝块力学特性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jifu Tan其他文献

Characterization of nanoparticle distribution in microcirculation: The influence of blood cells and vascular geometry
微循环中纳米颗粒分布的表征:血细胞和血管几何形状的影响
Toward Bi-directional In Situ Visualization and Analysis of Blood Flow Simulations With Dynamic Deforming Walls
动态变形壁血流模拟的双向原位可视化和分析
  • DOI:
    10.1109/ldav57265.2022.9966389
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nazariy Tishchenko;N. Ferrier;J. Insley;V. Mateevitsi;M. Papka;S. Rizzi;Jifu Tan
  • 通讯作者:
    Jifu Tan
Numerical simulation of nanoparticle delivery in microcirculation
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jifu Tan
  • 通讯作者:
    Jifu Tan
A multiphase model for Nanoparticle delivery in microcirculation
微循环中纳米颗粒输送的多相模型

Jifu Tan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jifu Tan', 18)}}的其他基金

CAREER: Multiscale Modeling of Thrombus Formation and its Response to External Loads
职业:血栓形成的多尺度建模及其对外部负载的响应
  • 批准号:
    2340696
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant

相似海外基金

Integration of Immunologic Phenotyping with Computational Approaches to Predict Clinical Trajectory in Septic Patients
免疫表型分析与计算方法相结合来预测脓毒症患者的临床轨迹
  • 批准号:
    10708534
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
III: Small: Computational Methods for Multi-dimensional Data Integration to Improve Phenotype Prediction
III:小:多维数据集成的计算方法以改进表型预测
  • 批准号:
    2246796
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
The integration of laboratory data with computational 3-D modeling to analyze the role of the central amygdala in neuropathic pain
将实验室数据与计算 3D 建模相结合,分析中央杏仁核在神经性疼痛中的作用
  • 批准号:
    10650977
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243706
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243704
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243703
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Ideas Lab: Discovery of Novel Functional RNA Classes by Computational Integration of Massively-Parallel RBP Binding and Structure Data
合作研究:创意实验室:通过大规模并行 RBP 结合和结构数据的计算集成发现新的功能性 RNA 类别
  • 批准号:
    2243705
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
Computational tools for RNA sequencing power analysis and data integration
用于 RNA 测序功率分析和数据集成的计算工具
  • 批准号:
    RGPIN-2020-05489
  • 财政年份:
    2022
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Discovery Grants Program - Individual
GOALI: ASCENT: Wafer-Scale Computational System (WaSCoS) with heterogeneous integration, power-heat transport, and optical interconnects
目标:ASCENT:具有异构集成、功率热传输和光学互连的晶圆级计算系统 (WaSCoS)
  • 批准号:
    2231097
  • 财政年份:
    2022
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
Developing computational methods to identify obesity-relevant brain cell types via integration of genetic and epigenetic data
开发计算方法,通过整合遗传和表观遗传数据来识别与肥胖相关的脑细胞类型
  • 批准号:
    568155-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了