ERI: Learning to Operate Distribution Grids with Extreme Penetration of Inverter-based Resources (L2ODG)

ERI:学习通过基于逆变器的资源的极端渗透来操作配电网(L2ODG)

基本信息

  • 批准号:
    2301938
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The power grid is undergoing a significant transformation as it shifts from centrally controlled systems to increasingly relying on inverter-based resources (IBRs), such as solar and wind power. This change brings new challenges and opportunities for how power systems are operated and managed. The proposed research aims to develop innovative machine learning-based solutions to address real-time operational challenges arising from integrating IBRs in power distribution grids. By creating a suite of robust, scalable, and safety-critical machine learning tools, this project will enable widespread adoption of clean energy sources and transform distribution grids. The broader impacts of this research include training the next generation of scientists and engineers through interdisciplinary research and curriculum design that integrates power engineering, machine learning, and the Internet-of-Things. Furthermore, the project will develop open-source datasets and models while promoting STEM education among underrepresented pre-college students through interactive demonstrations. Successful completion of this research will accelerate the adoption of clean energy resources, enhance power system resilience, and ensure a just and equitable energy transition.The proposed project seeks to develop a learning-based control and optimization framework addressing real-time operational challenges associated with power distribution grids and increasing integration of inverter-based resources (IBRs). The research objectives include: 1) Sample-efficient Hybrid Learning with Inaccurate System Models, combining deep reinforcement learning (DRL) with simplified grid models and real-world trials for rapid learning and performance improvement; 2) Graph Reinforcement Learning for Real-time Network Reconfiguration, integrating DRL with Graph Neural Networks (GNN) to create a novel learning architecture capable of adapting to and generalizing to arbitrary network topologies, addressing issues like voltage violations, reactive power distribution, and system loss minimization; and 3) Distributed Learning and Control over the Grid Edge, establishing a scalable, distributed learning framework that runs on resource-restricted edge devices by combining federated multi-agent learning with deep compression techniques. The proposed framework will be designed to be robust, adaptive, safe, and lightweight, offering real-time optimization and control of grid topology while considering network constraints to ensure system safety. This project will contribute to developing scalable, learning-based control solutions for future distribution systems with massive IBRs and dispersed measurements, fostering a more resilient and sustainable power grid.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着电网从中央控制系统转向越来越依赖基于逆变器的资源(ibr),如太阳能和风能,电网正在经历一场重大变革。这一变化为电力系统的运行和管理带来了新的挑战和机遇。拟议的研究旨在开发基于机器学习的创新解决方案,以解决将ibr集成到配电网中所带来的实时操作挑战。通过创建一套强大的、可扩展的、安全关键的机器学习工具,该项目将使清洁能源的广泛采用和配电电网的转型成为可能。这项研究更广泛的影响包括通过跨学科研究和课程设计,将电力工程、机器学习和物联网结合起来,培养下一代科学家和工程师。此外,该项目将开发开源数据集和模型,同时通过互动演示在代表性不足的大学预科学生中推广STEM教育。这项研究的成功完成将加速清洁能源的采用,增强电力系统的弹性,并确保公正和公平的能源转型。拟议的项目旨在开发一个基于学习的控制和优化框架,以解决与配电网和基于逆变器的资源(IBRs)集成相关的实时操作挑战。研究目标包括:1)基于不准确系统模型的样本高效混合学习,将深度强化学习(DRL)与简化网格模型和现实世界试验相结合,以实现快速学习和性能提高;2)用于实时网络重构的图强化学习,将DRL与图神经网络(GNN)集成在一起,创建一种新的学习架构,能够适应并推广到任意网络拓扑,解决电压违规、无功分配和系统损耗最小化等问题;3)网格边缘的分布式学习和控制,通过将联邦多智能体学习与深度压缩技术相结合,建立一个可扩展的分布式学习框架,运行在资源受限的边缘设备上。所提出的框架将被设计成鲁棒、自适应、安全和轻量级,在考虑网络约束以确保系统安全的同时,提供网格拓扑的实时优化和控制。该项目将有助于为未来具有大规模ibr和分散测量的配电系统开发可扩展的、基于学习的控制解决方案,从而培养更具弹性和可持续性的电网。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Di Shi其他文献

Implications of Stahl's Theorems to Holomorphic Embedding Pt 2: Numerical Convergence
斯塔尔定理对全纯嵌入的影响第 2 部分:数值收敛
  • DOI:
    10.17775/cseejpes.2020.01920
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abhinav Dronamraju;Songyan Li;Qi;Yuting Li;D. Tylavsky;Di Shi;Zhiwei Wang
  • 通讯作者:
    Zhiwei Wang
Line Outage Detection and Localization via Synchrophasor Measurement
通过同步相量测量进行线路断电检测和定位
Sulfur dioxide-releasing nanomotors improve the therapeutic effect of liver fibrosis by restoring the fenestrae of sinusoids
释放二氧化硫的纳米马达通过恢复肝血窦的窗孔提高肝纤维化的治疗效果
  • DOI:
    10.1016/j.jcis.2025.137557
  • 发表时间:
    2025-08-15
  • 期刊:
  • 影响因子:
    9.700
  • 作者:
    Lin Chen;Zhengwei Chen;Di Shi;Haifeng Ke;Chun Mao;Mimi Wan
  • 通讯作者:
    Mimi Wan
Haptic device for physiologically adaptive handle operation
用于生理适应性手柄操作的触觉设备
  • DOI:
    10.1016/j.ijmecsci.2024.109893
  • 发表时间:
    2025-01-15
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Zhi Wang;Xinglei Li;Di Shi;Yixin Shao;Wuxiang Zhang;Fei Liu;Xilun Ding
  • 通讯作者:
    Xilun Ding
A research for sound event localization and detection based on local–global adaptive fusion and temporal importance network
  • DOI:
    10.1007/s00530-024-01582-8
  • 发表时间:
    2024-11-27
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Di Shi;Min Guo;Miao Ma
  • 通讯作者:
    Miao Ma

Di Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
  • 批准号:
    2314075
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
  • 批准号:
    2337176
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER: Closing the Loop between Learning and Communication for Assistive Robot Arms
职业:关闭辅助机器人手臂的学习和交流之间的循环
  • 批准号:
    2337884
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了