Excellence in Research: A Hierarchical Machine Learning Approach for Securing of NoC-Based MPSoCs Against Thermal Attacks

卓越的研究:用于保护基于 NoC 的 MPSoC 免受热攻击的分层机器学习方法

基本信息

项目摘要

The design of Multi-Processor System-on-Chips (MPSoCs) often involves the integration of pre-designed Intellectual Property (IP) components to minimize costs and accelerate time to market. This approach leaves room for potential manipulation of the manufacturing process by adversaries who insert malicious circuitries known as Hardware Trojans (HTs) into the final product. Depending on the intentions of the adversary, an HT can perform various malicious tasks, including compromising reliability, causing operational failures, leaking information, and initiating denial of services. This project aims to address security concerns related to HT-infected thermal sensors embedded in MPSoCs. Given that thermal information is notably used in dynamic power and thermal management, it is crucial to monitor the behavior of thermal sensors within an MPSoC to detect and isolate compromised ones. This project aims to achieve this goal by employing a hierarchical machine learning (ML) approach. This project impacts a broad range of computing systems that utilize any of the commercially available MPSoCs on the market.In order to monitor the functionality of thermal sensors in an MPSoC, the thermal information obtained from the cores on the chip undergoes processing through a hierarchy of small to complex machine learning (ML) classifiers. At the lowest level, countermeasures implemented at the Network-on-Chip (NoC) routers within the target MPSoC try to identify compromised thermal sensors. The thermal data collected by each router is then transmitted to a chip-wide ML classifier, which functions as a dedicated ML accelerator, capable of capturing cases that are not easily detected by the router-level countermeasures. Subsequently, the thermal data is often transmitted to a cloud server for further ML processing, serving as a feedback mechanism to update the weights of the on-chip ML classifier. As the accuracy of the on-chip classifier improves through learning feedback from the cloud-based classifier, the proposed approach has the potential to address attacks with diverse probabilistic characteristics and profiles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多处理器片上系统(MPSoC)的设计通常涉及集成预先设计的知识产权(IP)组件,以最大限度地降低成本并加快上市时间。这种方法为将被称为硬件木马(HT)的恶意电路插入到最终产品中的对手对制造过程的潜在操纵留下了空间。根据攻击者的意图,HT可以执行各种恶意任务,包括损害可靠性、导致操作失败、泄露信息和发起拒绝服务。该项目旨在解决与嵌入MPSoC中的HT感染热传感器相关的安全问题。鉴于热信息主要用于动态功率和热管理,因此监控MPSoC内热传感器的行为以检测和隔离受损传感器至关重要。该项目旨在通过采用分层机器学习(ML)方法来实现这一目标。为了监控MPSoC中热传感器的功能,从芯片内核获得的热信息将通过一系列小型到复杂的机器学习(ML)分类器进行处理。在最低级别,在目标MPSoC内的片上网络(NoC)路由器处实现的对策尝试识别受损的热传感器。然后,每个路由器收集的热数据被传输到芯片级ML分类器,该分类器用作专用ML加速器,能够捕获路由器级对策不易检测到的情况。随后,热数据通常被传输到云服务器以进行进一步的ML处理,用作更新片上ML分类器的权重的反馈机制。由于片上分类器的准确性通过学习来自基于云的分类器的反馈而提高,因此所提出的方法有可能解决具有不同概率特征和配置文件的攻击。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ahmad Patooghy其他文献

Correction to: ReNo: novel switch architecture for reliability improvement of NoCs
  • DOI:
    10.1007/s11227-022-04800-0
  • 发表时间:
    2022-09-08
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Zahra Shirmohammadi;Yassin Allivand;Fereshte Mozafari;Ahmad Patooghy;Mona Jalal;Sanaz Kazemi Abharian
  • 通讯作者:
    Sanaz Kazemi Abharian
ReNo: novel switch architecture for reliability improvement of NoCs
  • DOI:
    10.1007/s11227-022-04732-9
  • 发表时间:
    2022-08-23
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Zahra Shirmohammadi;Yassin Allivand;Fereshte Mozafari;Ahmad Patooghy;Mona Jalal;Sanaz Kazemi Abharian
  • 通讯作者:
    Sanaz Kazemi Abharian
TrojanForge: Adversarial Hardware Trojan Examples with Reinforcement Learning
TrojanForge:具有强化学习的对抗性硬件木马示例
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amin Sarihi;Peter Jamieson;Ahmad Patooghy;Abdel
  • 通讯作者:
    Abdel
Addressing Benign and Malicious Crosstalk in Modern System-on-Chips
解决现代片上系统中的良性和恶意串扰
  • DOI:
    10.1109/access.2023.3342701
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Ahmad Patooghy;Mehdi Elahi;Maral Filvan Torkaman;Sara Sezavar Dokhtfaroughi;R. Rajaei
  • 通讯作者:
    R. Rajaei
A low-overhead and reliable switch architecture for Network-on-Chips
  • DOI:
    10.1016/j.vlsi.2010.02.003
  • 发表时间:
    2010-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ahmad Patooghy;Seyed Ghassem Miremadi;Mahdi Fazeli
  • 通讯作者:
    Mahdi Fazeli

Ahmad Patooghy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ahmad Patooghy', 18)}}的其他基金

Collaborative Research: CISE-MSI: DP: SaTC: Ensemble of Countermeasures for Malicious Thermal Sensors Attacks
合作研究:CISE-MSI:DP:SaTC:恶意热传感器攻击对策组合
  • 批准号:
    2219679
  • 财政年份:
    2022
  • 资助金额:
    $ 57.6万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331710
  • 财政年份:
    2024
  • 资助金额:
    $ 57.6万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
  • 批准号:
    2331711
  • 财政年份:
    2024
  • 资助金额:
    $ 57.6万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
  • 批准号:
    2337506
  • 财政年份:
    2024
  • 资助金额:
    $ 57.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:使用分层纳米结构动力系统进行二维波动工程
  • 批准号:
    2337507
  • 财政年份:
    2024
  • 资助金额:
    $ 57.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 57.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Designing Polymer Grafted-Nanoparticle Melts through a Hierarchical Computational Approach
合作研究:通过分层计算方法设计聚合物接枝纳米颗粒熔体
  • 批准号:
    2226081
  • 财政年份:
    2023
  • 资助金额:
    $ 57.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Designing Polymer Grafted-Nanoparticle Melts through a Hierarchical Computational Approach
合作研究:通过分层计算方法设计聚合物接枝纳米颗粒熔体
  • 批准号:
    2226898
  • 财政年份:
    2023
  • 资助金额:
    $ 57.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319780
  • 财政年份:
    2023
  • 资助金额:
    $ 57.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319781
  • 财政年份:
    2023
  • 资助金额:
    $ 57.6万
  • 项目类别:
    Standard Grant
Advanced measurement for unveiling hierarchical quasiparticles towards renovating molecular materials research
揭示分级准粒子的先进测量,以革新分子材料研究
  • 批准号:
    23H05461
  • 财政年份:
    2023
  • 资助金额:
    $ 57.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了