Open Process Models Optimizing Self Regulated Learning in the Classroom

开放过程模型优化课堂自我调节学习

基本信息

  • 批准号:
    2302778
  • 负责人:
  • 金额:
    $ 84.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

Many of today’s computing advancements, including artificial intelligence (AI), machine learning and data science, rely on distributed and parallel computation. Thus, developing distributed and parallel systems skills is essential for computer science education and preparation for the workforce. Learning parallel programming, however, is difficult because students often find it challenging to think in parallel rather than sequentially (how they are taught in introductory courses). Game-based learning approaches can provide an engaging environment that fosters metacognition and self-regulation. This work builds on an NSF-funded game called Parallel (educational IIS 1523116), which engages students in solving puzzles that increase in difficulty, helping students to solve puzzles using abstract principles from parallel programming. Studies of the game, however, found that it alone cannot stimulate students to manage their learning through planning, reflection, re-assessment, and re-planning. This project will develop community-based tools based on learning sciences principles to scaffold students' self-regulated learning. Student learning processes will be visualized using interfaces that allow students to learn from each other and instructors to coach and scaffold the learning process. The project will focus on the research question of how to engage students in metacognitive processes of self-regulated learning toward better learning of parallel programming. The project will address this research question through design-based research. The project will develop a set of studies to understand how students currently learn and self-regulate their learning within parallel programming classes and then use the results of these studies to help develop an AI system with augmented community interaction mechanisms. This system will be composed of a process visualization system that extends the Parallel game to allow students to view and reflect on their process through an open visualization of their own and other students’ data revealing problem-solving strategies and decisions. The community interaction mechanisms will allow students to leave comments for one another and for teachers to scaffold the learning process through feedback on the student’s learning process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今的许多计算进步,包括人工智能(AI),机器学习和数据科学,都依赖于分布式和并行计算。因此,开发分布式和并行系统技能对于计算机科学教育和劳动力准备至关重要。然而,学习并行编程是困难的,因为学生经常发现并行思考而不是顺序思考(在入门课程中如何教授)是一个挑战。基于游戏的学习方法可以提供一个引人入胜的环境,促进元认知和自我调节。这项工作建立在NSF资助的名为并行(教育IIS 1523116)的游戏基础上,该游戏让学生参与解决难度增加的难题,帮助学生使用并行编程的抽象原理解决难题。然而,对游戏的研究发现,单靠游戏并不能刺激学生通过计划、反思、重新评估和重新计划来管理他们的学习。该项目将根据学习科学原则开发以社区为基础的工具,以支持学生的自我调节学习。学生的学习过程将使用界面可视化,允许学生相互学习,教师指导和支撑学习过程。 该项目将重点研究如何让学生参与到元认知过程中的自我调节学习,以更好地学习并行编程。该项目将通过基于设计的研究来解决这一研究问题。该项目将开发一系列研究,以了解学生目前如何在并行编程课程中学习和自我调节学习,然后使用这些研究的结果来帮助开发具有增强社区互动机制的人工智能系统。该系统将由一个过程可视化系统组成,该系统扩展了并行游戏,允许学生通过自己和其他学生的数据公开可视化来查看和反思他们的过程,从而揭示解决问题的策略和决策。社区互动机制将允许学生相互留下评论,并让教师通过对学生学习过程的反馈来支撑学习过程。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Magy Seif ElNasr其他文献

Magy Seif ElNasr的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Magy Seif ElNasr', 18)}}的其他基金

Collaborative Research: StudyCrafter: An AI-Supported Platform for Engaging Learners to Conduct Research with Human Subjects
协作研究:StudyCrafter:人工智能支持的平台,用于吸引学习者对人类受试者进行研究
  • 批准号:
    2142497
  • 财政年份:
    2022
  • 资助金额:
    $ 84.95万
  • 项目类别:
    Standard Grant
Using Game Design Mechanics as Metaphors to Enhance Learning of Introductory Programming Concepts
使用游戏设计机制作为隐喻来加强对入门编程概念的学习
  • 批准号:
    2055436
  • 财政年份:
    2020
  • 资助金额:
    $ 84.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Open Player and Community Modeling as a Learning Tool
协作研究:开放玩家和社区建模作为学习工具
  • 批准号:
    2111396
  • 财政年份:
    2020
  • 资助金额:
    $ 84.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Open Player and Community Modeling as a Learning Tool
协作研究:开放玩家和社区建模作为学习工具
  • 批准号:
    1917982
  • 财政年份:
    2019
  • 资助金额:
    $ 84.95万
  • 项目类别:
    Standard Grant
Using Game Design Mechanics as Metaphors to Enhance Learning of Introductory Programming Concepts
使用游戏设计机制作为隐喻来加强对入门编程概念的学习
  • 批准号:
    1810972
  • 财政年份:
    2018
  • 资助金额:
    $ 84.95万
  • 项目类别:
    Standard Grant

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
磁转动超新星爆发中weak r-process的关键核反应
  • 批准号:
    12375145
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
多臂Bandit process中的Bayes非参数方法
  • 批准号:
    71771089
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 84.95万
  • 项目类别:
    Research Grant
EO4AgroClimate - Towards a digital twin of cropping systems based on ingestion of EO into process-based crop models (EOCROP)
EO4AgroClimate - 基于将 EO 摄入到基于过程的作物模型 (EOCROP) 的作物系统数字孪生
  • 批准号:
    ST/Y005295/1
  • 财政年份:
    2023
  • 资助金额:
    $ 84.95万
  • 项目类别:
    Research Grant
Gaussian Process Emulation for Mathematical Models of the Heart
心脏数学模型的高斯过程仿真
  • 批准号:
    2894114
  • 财政年份:
    2023
  • 资助金额:
    $ 84.95万
  • 项目类别:
    Studentship
Improving aerosol and spray process computation fluid dynamics models with machine learning approaches
利用机器学习方法改进气溶胶和喷雾过程计算流体动力学模型
  • 批准号:
    2881557
  • 财政年份:
    2023
  • 资助金额:
    $ 84.95万
  • 项目类别:
    Studentship
Exploring the developmental process of cerebral arteriovenous malformations: integrated analysis of clinical specimens and animal models
探索脑动静脉畸形的发育过程:临床标本与动物模型的综合分析
  • 批准号:
    23K15642
  • 财政年份:
    2023
  • 资助金额:
    $ 84.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EO4AgroClimate - Towards a digital twin of cropping systems based on ingestion of EO into process-based crop models (EOCROP)
EO4AgroClimate - 基于将 EO 摄入到基于过程的作物模型 (EOCROP) 的作物系统数字孪生
  • 批准号:
    ST/Y005317/1
  • 财政年份:
    2023
  • 资助金额:
    $ 84.95万
  • 项目类别:
    Research Grant
Gaussian Process Emulation for Mathematical Models of the Heart
心脏数学模型的高斯过程仿真
  • 批准号:
    2888280
  • 财政年份:
    2023
  • 资助金额:
    $ 84.95万
  • 项目类别:
    Studentship
Feasibility study on improving video production process using data-efficient Generative-AI models
使用数据高效的生成人工智能模型改进视频制作流程的可行性研究
  • 批准号:
    10081373
  • 财政年份:
    2023
  • 资助金额:
    $ 84.95万
  • 项目类别:
    Collaborative R&D
CAREER: Transforming Machine Learning Models Developed in Labs to Manufacturing Plants for In-Process Quality Prediction
职业:将实验室开发的机器学习模型转变为制造工厂,以进行过程中的质量预测
  • 批准号:
    2237242
  • 财政年份:
    2023
  • 资助金额:
    $ 84.95万
  • 项目类别:
    Standard Grant
Decision support systems based on heterogeneous data driven models for a safe and optimal operation of industrial process systems
基于异构数据驱动模型的决策支持系统,用于工业过程系统的安全和优化运行
  • 批准号:
    RGPIN-2021-02929
  • 财政年份:
    2022
  • 资助金额:
    $ 84.95万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了