CAREER: Transforming Machine Learning Models Developed in Labs to Manufacturing Plants for In-Process Quality Prediction

职业:将实验室开发的机器学习模型转变为制造工厂,以进行过程中的质量预测

基本信息

  • 批准号:
    2237242
  • 负责人:
  • 金额:
    $ 56.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2028-04-30
  • 项目状态:
    未结题

项目摘要

Recent advances in areas such as automation, data science, and artificial intelligence, are creating new opportunities for advanced manufacturing. However, most machine learning-based solutions are developed in lab environments, which require extensive model tuning and expensive data labeling to be implemented in manufacturing plants. The technical barrier arises from the major discrepancies in the amount, distributions, veracity, and modality between lab and plant data. This Faculty Early Career Development (CAREER) award will investigate new machine learning methodology to make machine learning generalizable and deployable. If successful, the project will accelerate the deployment of artificial intelligence in manufacturing plants and lower the entrance barrier to Industry 4.0 for small and medium manufacturers. This project is also expected to contribute to the development of new manufacturing workforce by engaging middle/high school students and local industries. This project aims to develop a machine learning architecture with expandable modules to learn from massive unlabeled data streaming and adapt to dynamically changing manufacturing conditions in plants. The lab-to-plant transformation will be realized upon testing two scientific hypotheses: (1) a generic model for characterizing massive unlabeled data can effectively learn the similarities of plant data; (2) an established model can be fully adapted to unseen but related scenarios with limited tuning. A transformer architecture-based novel machine learning framework will be configured to simultaneously realize: i) task-agnostic self-supervised contrastive learning from massive plant data for multi-level data characterization; ii) normalizing flow for building one-to-one mapping between sensing data toward virtual sensing data generation in plants for improved quality prediction; and iii) prompt model turning for effectively and efficiently adapting models between different manufacturing conditions. If successful, this project will enable generalizable, deployment-ready machine learning solutions that will be readily scalable for a broad scope of manufacturing applications and help U.S. manufacturers adopt smart manufacturing technologies at an accelerated pace.This project is jointly funded by the Advanced Manufacturing Program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自动化、数据科学和人工智能等领域的最新进展正在为先进制造业创造新的机遇。然而,大多数基于机器学习的解决方案都是在实验室环境中开发的,这需要在制造工厂实施广泛的模型调整和昂贵的数据标记。技术障碍源于实验室和植物数据在数量、分布、准确性和形态方面的重大差异。这个学院早期职业发展奖将调查新的机器学习方法,使机器学习具有普遍性和可部署性。如果成功,该项目将加快人工智能在制造工厂的部署,并降低中小制造商进入Industry 4.0的门槛。该项目还有望通过吸引初中生/高中生和当地行业,为发展新的制造业劳动力做出贡献。该项目旨在开发一个具有可扩展模块的机器学习体系结构,以从海量的无标签数据流中学习,并适应工厂动态变化的制造条件。实验室到植物的转换将在检验两个科学假设的基础上实现:(1)描述海量未标记数据的通用模型可以有效地学习植物数据的相似性;(2)建立的模型可以完全适应看不见但相关的场景,只需有限的调整。基于变压器体系结构的新型机器学习框架将被配置为同时实现:i)从海量工厂数据中进行任务无关的自我监督对比学习,以进行多层次数据表征;ii)标准化流程,以建立传感数据到工厂中虚拟传感数据生成的一对一映射,以提高质量预测;以及iii)提示模型转向,以有效和高效地适应不同制造条件之间的模型。如果成功,该项目将实现可推广的、部署就绪的机器学习解决方案,这些解决方案将易于扩展到广泛的制造应用程序,并帮助美国制造商加速采用智能制造技术。该项目由先进制造计划和既定的刺激竞争研究计划(EPSCoR)联合资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Virtual Sensing by Dense Encoder For Process Signals In Resistance Spot Welding
通过密集编码器对电阻点焊过程信号进行虚拟传感
Advanced process characterization and machine learning-based correlations between interdiffusion layer and expulsion in spot welding
  • DOI:
    10.1016/j.jmapro.2023.12.013
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    J. Kershaw;Hassan Ghassemi-Armaki;Blair E. Carlson;Peng Wang
  • 通讯作者:
    J. Kershaw;Hassan Ghassemi-Armaki;Blair E. Carlson;Peng Wang
Ontology-Integrated Tuning of Large Language Model for Intelligent Maintenance
智能维护大语言模型本体集成调优
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Peng;Karigiannis, John;Gao, Robert
  • 通讯作者:
    Gao, Robert
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peng Wang其他文献

Urban drought vulnerability assessment–A framework to integrate socio-economic, physical, and policy index in a vulnerability contribution analysis
城市干旱脆弱性评估——将社会经济、自然和政策指数纳入脆弱性贡献分析的框架
  • DOI:
    10.1016/j.scs.2019.102004
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    11.7
  • 作者:
    Peng Wang;Wenhui Qiao;Yuyi Wang;Shuchao Cao;Yuhu Zhang
  • 通讯作者:
    Yuhu Zhang
Hydrothermal Synthesis of Mesoporous Nanocrystalline Tetragonal ZrO2 Using Dehydroabietyltrimethyl Ammonium Bromine
脱氢枞基三甲基溴铵水热合成介孔纳米晶四方ZrO2
  • DOI:
    10.15376/biores.10.1.1271-1284
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Peng Wang;Zhen;Zongde Wang;Chen Shangxing;G. Fan
  • 通讯作者:
    G. Fan
In vitro study of non-thermal atmospheric pressure plasma in improving the durability of the dentin-adhesive interface with an etch-and-rinse system
非热常压等离子体在蚀刻和冲洗系统中提高牙本质粘合界面耐久性的体外研究
  • DOI:
    10.1088/2058-6272/aba3be
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Danyang Wang;Na Xie;Lin Wang;Peng Wang;Yanping Zuo;Chengfang Tang;Xinyang Ma;Wen Xu;Fei Liu;Qinhong Wang;Yang Wang
  • 通讯作者:
    Yang Wang
Comprehensive transcription analysis of human pathogenic fungus Penicillium marneffei in mycelial and yeast cells.
人类病原真菌马尔尼菲青霉菌在菌丝体和酵母细胞中的综合转录分析。
  • DOI:
    10.3109/13693786.2012.678398
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Xinyu Lin;Y. Ran;L. Gou;F. He;Ruifeng Zhang;Peng Wang;Yaling Dai
  • 通讯作者:
    Yaling Dai
Estimation of photovoltaic power generation potential in 2020 and 2030 using land resource changes: An empirical study from China
利用土地资源变化估算2020年和2030年光伏发电潜力:来自中国的实证研究
  • DOI:
    10.1016/j.energy.2020.119611
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Peng Wang;Shuainan Zhang;Yanru Pu;Shuchao Cao;Yuhu Zhang
  • 通讯作者:
    Yuhu Zhang

Peng Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peng Wang', 18)}}的其他基金

Understanding Manufacturing Process Dynamics and Machine Tool Anomaly Detection Through Process Sensing and Machine Learning
通过过程传感和机器学习了解制造过程动态和机床异常检测
  • 批准号:
    2015889
  • 财政年份:
    2020
  • 资助金额:
    $ 56.79万
  • 项目类别:
    Standard Grant
Uncommon Sugars and Their Glycosylation
不常见的糖及其糖基化
  • 批准号:
    0616892
  • 财政年份:
    2006
  • 资助金额:
    $ 56.79万
  • 项目类别:
    Continuing Grant
Synthesis of Natural Productions: A systematic appraoch to Deoxysugars
天然产物的合成:脱氧糖的系统方法
  • 批准号:
    0316806
  • 财政年份:
    2003
  • 资助金额:
    $ 56.79万
  • 项目类别:
    Continuing grant
Development of Green Chemistry for Syntheses of Polysaccharide-Based Materials
多糖基材料合成绿色化学的进展
  • 批准号:
    9728366
  • 财政年份:
    1997
  • 资助金额:
    $ 56.79万
  • 项目类别:
    Continuing Grant

相似海外基金

What's the Big Deal About Big Data?: How Machine Learning is Transforming Health and Healthcare in Nova Scotia
大数据有什么大不了的?:机器学习如何改变新斯科舍省的健康和医疗保健
  • 批准号:
    485607
  • 财政年份:
    2023
  • 资助金额:
    $ 56.79万
  • 项目类别:
    Miscellaneous Programs
CAREER: Transforming Biosensor Reliability using Sensor Time-series Data and Physics-based Machine Learning
职业:使用传感器时间序列数据和基于物理的机器学习改变生物传感器的可靠性
  • 批准号:
    2144310
  • 财政年份:
    2022
  • 资助金额:
    $ 56.79万
  • 项目类别:
    Continuing Grant
Cloud Cycle & HS2: Transforming Cement & its Supply Chain with IoT, Machine Learning & Big Data.
云周期
  • 批准号:
    98458
  • 财政年份:
    2021
  • 资助金额:
    $ 56.79万
  • 项目类别:
    Collaborative R&D
Machine Learning Techniques for Transforming Voice Audio
用于转换语音音频的机器学习技术
  • 批准号:
    563164-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 56.79万
  • 项目类别:
    University Undergraduate Student Research Awards
It's all in the Structure: Transforming drug design by bringing together molecular simulations and machine learning
一切都在结构中:通过结合分子模拟和机器学习来改变药物设计
  • 批准号:
    2437130
  • 财政年份:
    2020
  • 资助金额:
    $ 56.79万
  • 项目类别:
    Studentship
EAGER: Transforming Additive Nanomanufacturing with Machine Learning
EAGER:通过机器学习改变增材纳米制造
  • 批准号:
    1930582
  • 财政年份:
    2019
  • 资助金额:
    $ 56.79万
  • 项目类别:
    Standard Grant
Transforming Drug Discovery by Nanoscale Chemistry and Screening Enabled by Machine Learning
通过纳米级化学和机器学习筛选来改变药物发现
  • 批准号:
    105076
  • 财政年份:
    2019
  • 资助金额:
    $ 56.79万
  • 项目类别:
    Feasibility Studies
Workshop: Transforming Civil & Environmental Engineering Curriculum: Big Data, Machine Learning, and AI Innovations Impact on CEE Education; Alexandria, Virginia; 10 December 2
研讨会:土木工程转型
  • 批准号:
    1908926
  • 财政年份:
    2018
  • 资助金额:
    $ 56.79万
  • 项目类别:
    Standard Grant
Transforming dbGaP genetic and genomic data to FAIR-ready by artificial intelligence and machine learning algorithms
通过人工智能和机器学习算法将 dbGaP 遗传和基因组数据转变为 FAIR-ready
  • 批准号:
    10842954
  • 财政年份:
    2017
  • 资助金额:
    $ 56.79万
  • 项目类别:
Collaborative Research: Transforming the Understanding, Assessment and Prediction of Teamwork Effectiveness in Software Engineering Education using Machine Learning
协作研究:利用机器学习改变软件工程教育中团队合作有效性的理解、评估和预测
  • 批准号:
    1140172
  • 财政年份:
    2012
  • 资助金额:
    $ 56.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了