Mapping Class Semigroups and the Classification of Conformal Dynamical Systems

映射类半群与共形动力系统的分类

基本信息

  • 批准号:
    2302907
  • 负责人:
  • 金额:
    $ 26.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Dynamical systems are mathematical objects that describe the evolution of systems over time. They model many types of behavior, from animal neurons to epidemics to weather modeling. In some cases, we have a classification of the simplest types, and know how they are arranged. For example, we have now a good understanding in the real quadratic case. This achievement was the result of work by many researchers from different fields. It remains a central challenge to give a classification of examples beyond the real quadratic setting. This project takes up this challenge using tools from several different areas of mathematics. It focuses on systems that involve complex numbers, and on more general types called conformal. The conformal dynamical systems studied in this project include newly discovered, more exotic examples. Though our understanding of those more general systems is poorer, we have many new tools, from algebra to analysis, with which to study them. The project applies techniques from the well-developed theory of mapping class groups to the classification problem. Mapping class groups are symmetries of two-dimensional objects and are studied by both mathematicians and physicists. This project generalizes the notion of a mapping class group in a way that includes these two-dimensional complex dynamical systems. It also applies new tools from the recently developed theory of self-similar groups. This research area has an abundance of accessible problems. Students who engage with these topics will come to appreciate the essential unity of mathematics and the excitement of research. This will contribute to the development of a pool of mathematical talent that is broadly trained. Special software designed for this study allows for rich experimentation and the development of technical skills. The combinatorial foundations of complex dynamical systems were laid by A. Douady, J. Hubbard, and W. Thurston. The lack of a sufficiently natural algebraic framework delayed progress on fundamental problems until new techniques were introduced by L. Bartholdi and V. Nekrashevych in 2006. These selfsimilar group techniques are now standard. The recent developments in this new field are paralleling those in the theory of mapping class groups. The natural objects–branched self-covers of the sphere whose forward orbits of branch points form a finite set—may be fruitfully regarded as representing branched mapping classes in a countable semigroup. That this semigroup is in addition a biset over the pure mapping class group makes the combinatorial structure immensely rich. Just as with mapping class groups, on the semigroup side, there are similarly very deep connections to Teichmueller theory, dynamics, geometry, and algorithmic questions. The fuller exploration of these connections is the focus of this project. Basic dynamical finiteness results, and the development of an appropriate notion of relative hyperbolicity, are currently lacking. Intriguingly, the notions of relative hyperbolicity seem to lead naturally to connections with both coarse geometry and arithmetic dynamics on Berkovich spaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力系统是描述系统随时间演化的数学对象。它们模拟了许多类型的行为,从动物神经元到流行病再到天气建模。 在某些情况下,我们有最简单类型的分类,并知道它们是如何排列的。 例如,我们现在对真实的二次情形有了很好的理解。这一成就是来自不同领域的许多研究人员工作的结果。它仍然是一个中心的挑战,给一个分类的例子以外的真实的二次设置。 该项目使用来自多个不同数学领域的工具来应对这一挑战。 它专注于涉及复数的系统,以及称为保形的更一般的类型。 在这个项目中研究的共形动力系统包括新发现的,更奇特的例子。 虽然我们对这些更一般的系统的理解是穷人,我们有许多新的工具,从代数到分析,用它来研究它们。 该项目应用技术,从完善的理论映射类组的分类问题。 映射类群是二维物体的对称性,数学家和物理学家都在研究它。这个项目概括了映射类组的概念,包括这些二维复杂的动力系统。 它还应用了最近发展的自相似群理论的新工具。这一研究领域有着丰富的可及性问题。 谁从事这些主题的学生会来欣赏数学的本质统一和研究的兴奋。这将有助于培养一批受过广泛训练的数学人才。 为这项研究设计的特殊软件允许丰富的实验和技术技能的发展。 复杂动力系统的组合基础是由A. Douady,J. Hubbard,and W.瑟斯顿由于缺乏一个足够自然的代数框架,基本问题的进展被推迟,直到L。Bartholdi和V. Nekrashevych在2006年。这些自相似分组技术现在是标准的。这一新领域的最新发展与映射类群理论的发展是并行的。自然对象--球面的分支自覆盖,其分支点的前向轨道形成有限集--可以被有效地看作是可数半群中分支映射类的表示。这个半群又是纯映射类群上的一个偏集,这使得它的组合结构非常丰富。就像映射类群一样,在半群方面,与泰希穆勒理论、动力学、几何和算法问题有着同样非常深刻的联系。对这些联系的更充分的探索是本项目的重点。基本的动力学有限性的结果,和发展一个适当的概念,相对双曲,目前缺乏。有趣的是,相对双曲性的概念似乎自然地导致与粗糙几何和算术动力学在Berkovich spaces.This奖项反映了NSF的法定使命的连接,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Pilgrim其他文献

Kevin Pilgrim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Pilgrim', 18)}}的其他基金

The Circle at Infinity
无穷远的圆
  • 批准号:
    1952662
  • 财政年份:
    2020
  • 资助金额:
    $ 26.94万
  • 项目类别:
    Standard Grant
Research Experiences for Undergraduates in Mathematics at Indiana University
印第安纳大学数学本科生的研究经历
  • 批准号:
    0851852
  • 财政年份:
    2009
  • 资助金额:
    $ 26.94万
  • 项目类别:
    Standard Grant
Deepening the Pool
加深水池
  • 批准号:
    0630424
  • 财政年份:
    2006
  • 资助金额:
    $ 26.94万
  • 项目类别:
    Standard Grant
Research Experiences for Undergraduates in Mathematics at Indiana University
印第安纳大学数学本科生的研究经历
  • 批准号:
    0453309
  • 财政年份:
    2005
  • 资助金额:
    $ 26.94万
  • 项目类别:
    Continuing Grant
Combinatorics, Dynamics, and Geometry of Postcritically Finite Rational Maps
后临界有限有理图的组合学、动力学和几何
  • 批准号:
    0400852
  • 财政年份:
    2004
  • 资助金额:
    $ 26.94万
  • 项目类别:
    Standard Grant
The Structure of Expanding Rational Maps as Holomorphic Dynamical Systems
作为全纯动力系统的展开有理映射的结构
  • 批准号:
    9996070
  • 财政年份:
    1998
  • 资助金额:
    $ 26.94万
  • 项目类别:
    Standard Grant
The Structure of Expanding Rational Maps as Holomorphic Dynamical Systems
作为全纯动力系统的展开有理映射的结构
  • 批准号:
    9703724
  • 财政年份:
    1997
  • 资助金额:
    $ 26.94万
  • 项目类别:
    Standard Grant

相似国自然基金

Class Ⅲ型过氧化物酶基因OsPOX8.1调控水稻抗褐飞虱的分子机制研究
  • 批准号:
    32301918
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
拟南芥Class II TCP转录因子调控雌蕊顶端命运决定的分子机制
  • 批准号:
    32300291
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PAR1介导的MHC class I表达探讨血府逐瘀汤逆转肺癌免疫逃逸的作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
无细胞生物合成S-腺苷甲硫氨酸自由基依赖的Class B甲基转移酶的系统构筑及应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
CAMKIV-MHC Class I-ER Stress途径对骨骼肌炎症及再生的调控及机制研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
时空 g-class Ornstein-Uhlenbeck 型过程的统计推断问题研究
  • 批准号:
    11801355
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Class IIa 类乳酸菌细菌素 plantaricin YKX 在亚抑菌浓度下对脂环酸芽孢杆菌 QS 系统的调控机理研究
  • 批准号:
    31801563
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Class I HDACs介导的DNA损伤修复和转录重编程在肝癌发生中的作用研究
  • 批准号:
    81872019
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
Class III PI3K通过负反馈AngII/AT1信号通路调节血管内皮细胞衰老的分子机制研究
  • 批准号:
    81771509
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Politics of Financial Citizenship - How Do Middle Class Expectations Shape Financial Policy and Politics in Emerging Market Democracies?
金融公民政治——中产阶级的期望如何影响新兴市场民主国家的金融政策和政治?
  • 批准号:
    EP/Z000610/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.94万
  • 项目类别:
    Research Grant
Theory and algorithms for a new class of computationally amenable nonconvex functions
一类新的可计算非凸函数的理论和算法
  • 批准号:
    2416250
  • 财政年份:
    2024
  • 资助金额:
    $ 26.94万
  • 项目类别:
    Standard Grant
Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
  • 批准号:
    DP240100186
  • 财政年份:
    2024
  • 资助金额:
    $ 26.94万
  • 项目类别:
    Discovery Projects
Parental Social Class and Children's Educational Outcomes: A Longitudinal Analysis of the Millennium Cohort Study and Administrative Data
父母社会阶层与儿童教育成果:千年队列研究和行政数据的纵向分析
  • 批准号:
    ES/X012085/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.94万
  • 项目类别:
    Research Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 26.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Class Struggle in Ancient Greek Democracy
古希腊民主中的阶级斗争
  • 批准号:
    EP/Z000084/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.94万
  • 项目类别:
    Research Grant
Class-Balanced Contrastive Learning for Multimodal Recognition
多模态识别的类平衡对比学习
  • 批准号:
    24K20831
  • 财政年份:
    2024
  • 资助金额:
    $ 26.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Indication selection, patient stratification, and IND preparation for STX-002: the first-in-class LRG1 inhibitor for treatment of chronic kidney disease and immunotherapy-resistant tumours.
STX-002的适应症选择、患者分层和IND准备:用于治疗慢性肾病和免疫治疗耐药肿瘤的一流LRG1抑制剂。
  • 批准号:
    10092585
  • 财政年份:
    2024
  • 资助金额:
    $ 26.94万
  • 项目类别:
    Collaborative R&D
CAREER: Rigidity in Mapping class groups and homeomorphism groups
职业:映射类群和同胚群中的刚性
  • 批准号:
    2339110
  • 财政年份:
    2024
  • 资助金额:
    $ 26.94万
  • 项目类别:
    Continuing Grant
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
  • 批准号:
    502556
  • 财政年份:
    2024
  • 资助金额:
    $ 26.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了