The Circle at Infinity
无穷远的圆
基本信息
- 批准号:1952662
- 负责人:
- 金额:$ 3.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports participation in the conference "The Circle at Infinity" to take place May 22-24, 2020 at Harvard University, Cambridge, MA. The conference will focus on select areas within dynamics and geometry where recent progress has led to the emergence of significant new directions. A key goal is to expose junior mathematicians to the deeper unifying themes that underlie the areas represented in the conference and to connect them to leading experts in their own and in other fields. The organizers expect about 200 attendees. This award primarily supports U.S. speakers and early-career participants in the conference, including women and members of other groups that are currently underrepresented in the mathematical sciences. Topics discussed at the conference include: the structure of moduli spaces of Riemann surfaces, dynamics on complex surfaces, arithmetic dynamics, homogeneous dynamics and relations to ergodic theory, diophantine approximation, geometric topology, and related areas, especially number theory. The list of speakers and additional information are available at the conference website: https://www.math.harvard.edu/the-circle-at-infinity-a-celebration-of-the-mathematics-of-curtis-t-mcmullen/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持参加将于2020年5月22日至24日在马萨诸塞州剑桥的哈佛大学举行的会议“The Circle at Infinity”。会议将重点讨论动力学和几何学中的一些领域,这些领域最近的进展导致了重要的新方向的出现。一个关键目标是让初级数学家接触到会议所代表的领域的更深层次的统一主题,并将他们与自己和其他领域的领先专家联系起来。主办方预计约有200名与会者。该奖项主要支持美国演讲者和早期职业参与者,包括女性和目前在数学科学中代表性不足的其他群体的成员。在会议上讨论的主题包括:结构的模空间的黎曼曲面,动力学的复杂曲面,算术动力学,齐次动力学和关系,遍历理论,丢番图逼近,几何拓扑,以及相关领域,特别是数论。发言者名单和其他信息可在会议网站上获得:https://www.math.harvard.edu/the-circle-at-infinity-a-celebration-of-the-mathematics-of-curtis-t-mcmullen/This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Pilgrim其他文献
Kevin Pilgrim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Pilgrim', 18)}}的其他基金
Mapping Class Semigroups and the Classification of Conformal Dynamical Systems
映射类半群与共形动力系统的分类
- 批准号:
2302907 - 财政年份:2023
- 资助金额:
$ 3.6万 - 项目类别:
Standard Grant
Research Experiences for Undergraduates in Mathematics at Indiana University
印第安纳大学数学本科生的研究经历
- 批准号:
0851852 - 财政年份:2009
- 资助金额:
$ 3.6万 - 项目类别:
Standard Grant
Research Experiences for Undergraduates in Mathematics at Indiana University
印第安纳大学数学本科生的研究经历
- 批准号:
0453309 - 财政年份:2005
- 资助金额:
$ 3.6万 - 项目类别:
Continuing Grant
Combinatorics, Dynamics, and Geometry of Postcritically Finite Rational Maps
后临界有限有理图的组合学、动力学和几何
- 批准号:
0400852 - 财政年份:2004
- 资助金额:
$ 3.6万 - 项目类别:
Standard Grant
The Structure of Expanding Rational Maps as Holomorphic Dynamical Systems
作为全纯动力系统的展开有理映射的结构
- 批准号:
9996070 - 财政年份:1998
- 资助金额:
$ 3.6万 - 项目类别:
Standard Grant
The Structure of Expanding Rational Maps as Holomorphic Dynamical Systems
作为全纯动力系统的展开有理映射的结构
- 批准号:
9703724 - 财政年份:1997
- 资助金额:
$ 3.6万 - 项目类别:
Standard Grant
相似国自然基金
基于新型直线加速器(Halycon、Truebeam、Infinity和国产联影)的海马功能保护全脑放射治疗技术规范及推广应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
广义Koszul代数,A-infinity代数及其Koszul对偶
- 批准号:10501041
- 批准年份:2005
- 资助金额:13.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Research on Infinity Natural Walk
无限自然行走研究
- 批准号:
23H01381 - 财政年份:2023
- 资助金额:
$ 3.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Asymptotic behavior of null geodesics near future null infinity and its application
近未来零无穷大零测地线的渐近行为及其应用
- 批准号:
22KJ1933 - 财政年份:2023
- 资助金额:
$ 3.6万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Topological Complexity and A-infinity structure
拓扑复杂性和A-无穷结构
- 批准号:
23K03093 - 财政年份:2023
- 资助金额:
$ 3.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Abberior Infinity Line Upright 3D STED/Confocal Microscope
Abberior Infinity Line 正置 3D STED/共焦显微镜
- 批准号:
10632948 - 财政年份:2023
- 资助金额:
$ 3.6万 - 项目类别:
A design method of H-infinity control law for interval delay systems: application to various responsive systems
时滞系统H无穷控制律的设计方法:在各种响应系统中的应用
- 批准号:
21K04127 - 财政年份:2021
- 资助金额:
$ 3.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ricci flow of manifolds with singularities at infinity
无穷远奇点流形的 Ricci 流
- 批准号:
EP/T019824/1 - 财政年份:2020
- 资助金额:
$ 3.6万 - 项目类别:
Research Grant
Loopcycle - DS Smith Collaboration: Project Infinity
Loopcycle - DS Smith 合作:Project Infinity
- 批准号:
77947 - 财政年份:2020
- 资助金额:
$ 3.6万 - 项目类别:
Collaborative R&D
Limit theorems for Pólya urns with initial composition tending to infinity with time
初始成分随时间趋于无穷大的波利亚瓮的极限定理
- 批准号:
2646038 - 财政年份:2019
- 资助金额:
$ 3.6万 - 项目类别:
Studentship
Limit theorems for Pólya urns with initial composition tending to infinity with time
初始成分随时间趋于无穷大的波利亚瓮的极限定理
- 批准号:
2278905 - 财政年份:2019
- 资助金额:
$ 3.6万 - 项目类别:
Studentship