Surface Chemical Effects On Localized Surface Plasmon Resonance In Metal Oxide Nanocrystals

金属氧化物纳米晶体中局域表面等离子体共振的表面化学效应

基本信息

  • 批准号:
    2303296
  • 负责人:
  • 金额:
    $ 52.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

With support from the Macromolecular, Supramolecular and Nanochemistry Program (MSN) in the Division of Chemistry, Professor Delia Milliron of the University of Texas at Austin is combining surface chemical reactions and advanced chemical analysis to study how the optical and electronic properties of metal oxide nanocrystals are influenced by their surface chemistry. In these tiny crystals, highly mobile electrons move under the influence of light, harnessing energy and concentrating otherwise diffuse infrared light into local regions the size of individual molecules. However, the very small size of the crystals means that their surfaces have a big impact on their mobile electrons and their interaction with light. Professor Milliron and her students are using chemical reactions to change the properties of the nanocrystal surfaces to understand and control the influence of surface chemistry. Their discoveries could lead to improved optoelectronic devices, like solar cells and displays, and to more sensitive chemical sensors to detect toxins or biochemical indicators of disease. The team is using virtual outreach strategies, especially targeting younger audiences, to broaden public awareness of science and to make science more accessible.This project involves the post-synthetic surface chemical modification of doped metal oxide nanocrystals. Aliovalent dopants are incorporated in the nanocrystals during colloidal synthesis, introducing a high concentration of free electrons and leading to localized surface plasmon resonance (LSPR) in the infrared spectral region. Their localized surface plasmon resonance (LSPR) absorption spectra and the near-field enhancement of electromagnetic field intensity are strongly influenced by the presence of surface electronic states that induce band bending. This project employs post-synthetic surface chemical reactions to modify the electronic structure of the nanocrystal surfaces. Dipolar organic molecules are attached to the surface to shift the energy levels and modify the depletion layer. During overgrowth of insulating metal oxide shells by colloidal atomic layer deposition, reactions with the chemical groups responsible for band banding shift the energy levels of the associated surface states. Optical analysis will be combined with photoemission spectroscopy to analyze the mechanisms by which surface chemistry influences LSPR, with the aim of establishing the foundational understanding needed to develop sensitive and chemically specific detectors, and to direct the flow of energy to tune and enhance catalytic processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系大分子,超分子和纳米化学项目(MSN)的支持下,德克萨斯大学奥斯汀分校的迪利亚·米利龙教授将表面化学反应和高级化学分析结合起来,研究金属氧化物纳米晶体的光学和电子性质如何受到其表面化学的影响。在这些微小的晶体中,高度移动的电子在光的影响下移动,利用能量并将漫射的红外光集中到单个分子大小的局部区域。然而,晶体的尺寸非常小,这意味着它们的表面对它们的移动的电子及其与光的相互作用有很大的影响。Milliron教授和她的学生正在使用化学反应来改变表面的性质,以了解和控制表面化学的影响。他们的发现可能会导致改进的光电设备,如太阳能电池和显示器,以及更敏感的化学传感器来检测毒素或疾病的生化指标。该团队正在使用虚拟推广策略,特别是针对年轻受众,以扩大公众对科学的认识,使科学更容易获得。该项目涉及掺杂金属氧化物纳米晶体的合成后表面化学改性。在胶体合成过程中将异价掺杂剂掺入纳米晶体中,引入高浓度的自由电子并导致红外光谱区域中的局部表面等离子体共振(LSPR)。它们的局域表面等离子体共振(LSPR)吸收光谱和电磁场强度的近场增强强烈影响的表面电子态的存在下,诱导能带弯曲。该项目采用合成后的表面化学反应来修改电子结构的表面。偶极有机分子附着在表面上以移动能级并修改耗尽层。在通过胶体原子层沉积的绝缘金属氧化物壳的过度生长期间,与负责能带的化学基团的反应使相关表面态的能级移动。光学分析将与光发射光谱相结合,分析表面化学影响LSPR的机制,目的是建立开发灵敏且化学特异性检测器所需的基础认识,该奖项反映了NSF的法定使命,并通过使用基金会的知识产权进行评估,被认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Delia Milliron其他文献

Delia Milliron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Delia Milliron', 18)}}的其他基金

PFI-TT: Smart windows for on-demand control of solar heat and daylight
PFI-TT:用于按需控制太阳热能和日光的智能窗户
  • 批准号:
    2345804
  • 财政年份:
    2024
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
Near-field coupling between molecular vibrations and plasmonic metal oxide nanocrystals
分子振动与等离子体金属氧化物纳米晶体之间的近场耦合
  • 批准号:
    1905263
  • 财政年份:
    2019
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
PFI-TT: Understanding proton conductivity in nanocomposite materials to enable advanced hydrogen energy devices
PFI-TT:了解纳米复合材料中的质子电导率以实现先进的氢能设备
  • 批准号:
    1919239
  • 财政年份:
    2019
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
2016 Colloidal Semiconductor Nanocrystals Gordon Research Conference
2016胶体半导体纳米晶体戈登研究会议
  • 批准号:
    1624027
  • 财政年份:
    2016
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
Plasmonic Metal Oxide Nanocrystals for Near-Field Coupling
用于近场耦合的等离激元金属氧化物纳米晶体
  • 批准号:
    1609656
  • 财政年份:
    2016
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Small Angle X-ray Scattering Instrument with In Situ Capabilities
MRI:采集具有原位功能的小角度 X 射线散射仪器
  • 批准号:
    1624659
  • 财政年份:
    2016
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant

相似国自然基金

Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Physico-chemical effects on long-time fluid transport for CO2 geostorage
二氧化碳地质封存对长期流体输送的物理化学效应
  • 批准号:
    DP240100378
  • 财政年份:
    2024
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Discovery Projects
Development of innovative multi-material joining technology for CN using mechanical and chemical effects
利用机械和化学效应开发创新的 CN 多材料连接技术
  • 批准号:
    23K03593
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effects of Urban Chemical and Non-Chemical Stressors on Preadolescent Mental Health
城市化学和非化学压力源对青春期前心理健康的影响
  • 批准号:
    10813283
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
Improving inferences on health effects of chemical exposures
改进对化学品暴露对健康影响的推断
  • 批准号:
    10753010
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
RUI: Innovative Simulations to Study Pressure Effects on Fundamental Gas-Phase Chemical Processes
RUI:创新模拟研究压力对基本气相化学过程的影响
  • 批准号:
    2247669
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
Chemical Imaging of Metal Surfaces at the Solid-Liquid Interface: Effects of Grain Structure on Electrocatalytic Reactions
固液界面金属表面的化学成像:晶粒结构对电催化反应的影响
  • 批准号:
    2246583
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Standard Grant
Plastic fish: assessing the scale, chemical properties and biological effects of petrochemical plastics and bioplastics on aquaculture fish
塑料鱼:评估石化塑料和生物塑料对水产养殖鱼的规模、化学性质和生物效应
  • 批准号:
    BB/X007960/1
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Research Grant
Effects and mechanism of burial diagenesis on the chemical composition of biogenic carbonates
埋藏成岩作用对生物碳酸盐化学成分的影响及机制
  • 批准号:
    23H01263
  • 财政年份:
    2023
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Tackling Arctic toxicology challenges using in vitro and in silico approaches to characterize and predict organism-level effects of chemical stressors
使用体外和计算机方法来表征和预测化学应激源对生物体水平的影响,应对北极毒理学挑战
  • 批准号:
    DGECR-2022-00267
  • 财政年份:
    2022
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Discovery Launch Supplement
Tackling Arctic toxicology challenges using in vitro and in silico approaches to characterize and predict organism-level effects of chemical stressors
使用体外和计算机方法来表征和预测化学应激源对生物体水平的影响,应对北极毒理学挑战
  • 批准号:
    RGPNS-2022-03901
  • 财政年份:
    2022
  • 资助金额:
    $ 52.34万
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了