Interactions Between Contact Geometry, Floer Theory and Low-Dimensional Topology

接触几何、弗洛尔理论和低维拓扑之间的相互作用

基本信息

  • 批准号:
    1907654
  • 负责人:
  • 金额:
    $ 29.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This project is jointly funded by the Topology program and the Established Program to Stimulate Competitive Research (EPSCoR). It centers on questions lying at the intersection of two fields of mathematics called contact geometry and low-dimensional topology. Contact structure are geometric objects on certain spaces known as manifolds that arise naturally in physics through differential equations, optics, and dynamics. Pioneering work of Eliashberg first showed that contact structures play an essential role in determining geometric and topological properties of three- and four-dimensional manifolds. Contact geometry has since entered a renaissance after featuring prominently in the resolution of several long-standing problems in low-dimensional topology. It is in this context that this project broadly seeks to better our understanding of how characteristics of contact structures determine either geometric properties of the spaces they live on, or influence powerful invariants used in their study. The project will have immediate impact in several fields, such as: low-dimensional topology, symplectic and contact topology, dynamics, and mathematical physics. The PI will also devote time to helping mentor graduate students and postdoctoral scholars as they transition to being independent researchers.Recall that contact structures fall into one of two categories: tight or overtwisted. Understanding which three-manifolds support tight contact structures and the number of tight contact structures supported by a given three-manifold are the paramount goals of modern contact geometry. Accordingly, a primary goal of this project is to develop effective and computable invariants capable of determining tightness and distinguishing contact structures. Since the inception of these invariants, strong evidence has steadily built suggesting deep connections between contact structures on three-manifolds and their associated Floer-theoretic invariants. For instance, each of the various Floer homologies support an invariants which are capable of detecting tightness and distinguishing contact structures. An important goal of this project is to develop and explore refinements of these invariants which are simultaneously more effective in detecting tightness, and are more easily computable. In a parallel direction, according to work on the PI and others, much of the formal algebraic structure underpinning Floer theory appears to mirror natural geometric characteristics and constructions involving contact structures. In turn, another key goal of this project is to clarify connections and correspondences between the algebraic structure of Floer-theoretic invariants and natural contact geometric phenomena and constructions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由拓扑计划和刺激竞争研究的既定计划(EPSCoR)共同资助。它集中在问题在于交叉的两个领域的数学称为接触几何和低维拓扑。接触结构是某些空间上的几何对象,称为流形,通过微分方程,光学和动力学在物理学中自然出现。Eliashberg的开创性工作首先表明,接触结构在确定三维和四维流形的几何和拓扑性质中起着至关重要的作用。接触几何学在解决了低维拓扑学中几个长期存在的问题后,已经进入了一个复兴时期。正是在这种背景下,该项目广泛寻求更好地理解接触结构的特征如何决定它们所居住的空间的几何特性,或影响它们研究中使用的强大不变量。该项目将在几个领域产生直接影响,如:低维拓扑,辛和接触拓扑,动力学和数学物理。PI还将花时间指导研究生和博士后学者,帮助他们过渡到独立研究人员。回想一下,接触结构分为两类:紧密或过度扭曲。了解哪些三流形支持紧接触结构,以及由给定的三流形支持的紧接触结构的数量是现代接触几何的首要目标。 因此,本项目的主要目标是开发能够确定紧密性和区分接触结构的有效且可计算的不变量。自从这些不变量出现以来,已经有强有力的证据表明三流形上的接触结构与其相关的Floer理论不变量之间存在着深刻的联系。 例如,各种Floer同源中的每一个都支持能够检测紧密性和区分接触结构的不变量。 该项目的一个重要目标是开发和探索这些不变量的改进,这些不变量同时在检测紧密性方面更有效,并且更容易计算。在平行的方向上,根据PI和其他人的工作,支撑Floer理论的许多形式代数结构似乎反映了自然的几何特征和涉及接触结构的构造。 反过来,该项目的另一个关键目标是阐明Floer理论不变量的代数结构与自然接触几何现象和构造之间的联系和对应关系。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Vela-Vick其他文献

David Vela-Vick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Vela-Vick', 18)}}的其他基金

Contact geometry, Heegaard Floer homology and open book decompositions
接触几何、Heegaard Floer 同调和开卷分解
  • 批准号:
    1205933
  • 财政年份:
    2012
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Standard Grant
Contact geometry, Heegaard Floer homology and open book decompositions
接触几何、Heegaard Floer 同调和开卷分解
  • 批准号:
    1249708
  • 财政年份:
    2012
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0902924
  • 财政年份:
    2009
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Fellowship Award

相似海外基金

Consequences of secondary contact between native and closely related exotic species: ecological processes and genome dynamics
本地物种和密切相关的外来物种之间二次接触的后果:生态过程和基因组动态
  • 批准号:
    23KJ2156
  • 财政年份:
    2023
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The probiotic potential of symbiotic partnerships: Can contact between aquatic animals enhance the anti-pathogen potential of protective microbiomes?
共生伙伴关系的益生菌潜力:水生动物之间的接触能否增强保护性微生物组的抗病原体潜力?
  • 批准号:
    2235325
  • 财政年份:
    2023
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Standard Grant
Development of New Computational Methods for Phase Transition in Flow Problems With Contact Between Moving Solid Surfaces
移动固体表面接触流动问题相变新计算方法的开发
  • 批准号:
    23H00477
  • 财政年份:
    2023
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
LEAPS-MPS: Computational Modeling of the Interaction between the Eye and a Contact Lens
LEAPS-MPS:眼睛和隐形眼镜之间相互作用的计算模型
  • 批准号:
    2316951
  • 财政年份:
    2023
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Standard Grant
Correlative observation of contact site of mitochondria and endoplasmic reticulum between light microscopy and electron microscopy
线粒体与内质网接触部位光镜与电镜关联观察
  • 批准号:
    23K06329
  • 财政年份:
    2023
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Factors and Functions of Contact Sites between Membrane-bound and Membrane-less Organelles
膜结合和无膜细胞器接触位点的因素和功能
  • 批准号:
    10712759
  • 财政年份:
    2023
  • 资助金额:
    $ 29.56万
  • 项目类别:
Evaluation of Heat Transfer Characteristics Considering Thermal Contact Resistance between Sintered Ag Particles and Metallic Solid Using Steady-State Method
考虑烧结银颗粒与金属固体之间的热接触热阻的传热特性评估采用稳态法
  • 批准号:
    22K14196
  • 财政年份:
    2022
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecological future making of childrearing in contact zones between hunter-gatherers and agro-pastoralists in Africa
非洲狩猎采集者和农牧民接触区育儿的生态未来
  • 批准号:
    22H04929
  • 财政年份:
    2022
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Research on realizing contact and co-creation between real space and virtual space in online contents
网络内容中实现真实空间与虚拟空间的接触与共创研究
  • 批准号:
    22K12337
  • 财政年份:
    2022
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modelling an Occupation: Exploring Points of Contact Between Authorities and Islanders on the Nazi-Occupied Channel Islands
占领建模:探索纳粹占领的海峡群岛当局与岛民之间的接触点
  • 批准号:
    2700538
  • 财政年份:
    2022
  • 资助金额:
    $ 29.56万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了