RI: Small: Towards Abstractive Summarization That Preserves the Original Meaning
RI:小:走向保留原意的抽象概括
基本信息
- 批准号:2303678
- 负责人:
- 金额:$ 49.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-15 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Information floods people's daily lives, and it is overwhelming. Summarization systems that identify salient pieces of information and present it concisely can help. The single most important characteristic a text summary must possess to make it usable in real-world scenarios is its reliability. A summary is reliable if its content can be trusted to remain accurate to the original. While deep neural architectures have demonstrated success in abstractive summarization, studies reveal that system-generated abstracts can contain inaccurate factual details or hallucinated content that change the meaning of the original texts. An abstractive summarization system seeks to transform lengthy source texts to a succinct summary using natural language generation capabilities; the summary can contain new words and phrases that are unseen in the source input. With greater flexibility of lexical choices comes increased demand for reliability---summaries must keep the meaning of the original intact. Without emphasizing summary reliability, system outputs can render useless at best, and misleading and detrimental at worst. Thus, there exists a pressing need, and this project aims to develop robust text summarizers whose outputs can preserve the meaning of the original. This project will have major impact on science and technology as well as the development of society. The knowledge acquired in this project can be extended to help build robust language generation capabilities that are crucial for machine translation. This project will fund both undergraduate and graduate students where undergraduate students are teamed up with graduate students to gain hands-on experiences and promote mentorship.This project aims to build robust abstractive summarization systems whose summaries can remain true to the original texts by harnessing the power of deep neural models and linguistic structure prediction. Given that major relations of a summary (e.g., who did what to whom) are often the same or similar to those of the source text, the project focuses on developing methods that learn to promote summaries that preserve important source relations and discourage summaries that contain erroneous relations, thus preventing a summary from dramatically changing the meaning of the original text. The research objective includes the following. (a) Developing an abstractive, sentence-to-sentence summarizer that jointly performs generation of summary sentences and parsing sentence structures. (b) Developing a many-to-one sentence summarizer that explicitly models coreference relationships between mentions observed in the source text. Drawing upon recent developments in deep neural architectures, these efforts are expected to improve a neural abstractive multi-document summarizer to help it properly encode the source texts and decode the summary sequence. (c) Devising a novel, semi-automatic evaluation scheme leveraging question-answering to assess to what extent system summaries preserve the meaning of the original texts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
信息充斥着人们的日常生活,它是压倒性的。总结系统可以识别突出的信息并简洁地呈现出来,这会有所帮助。一个文本摘要必须具备的最重要的特征是它的可靠性,以使它在现实世界中可用。如果可以相信摘要的内容与原文保持准确,则摘要是可靠的。虽然深度神经架构在抽象摘要方面取得了成功,但研究表明,系统生成的摘要可能包含不准确的事实细节或幻觉内容,这些内容会改变原始文本的含义。摘要摘要系统试图使用自然语言生成功能将冗长的源文本转换为简洁的摘要;摘要可以包含源输入中看不到的新单词和短语。随着词汇选择的灵活性越来越大,对可靠性的要求也越来越高-摘要必须保持原文的意义不变。如果不强调摘要的可靠性,系统输出充其量是无用的,最坏的情况是误导和有害的。因此,存在着迫切的需求,本项目的目的是开发强大的文本摘要,其输出可以保持原来的意义。该项目将对科学技术和社会发展产生重大影响。在这个项目中获得的知识可以扩展,以帮助建立强大的语言生成能力,这对机器翻译至关重要。该项目将资助本科生和研究生,本科生与研究生合作,获得实践经验并促进指导。该项目旨在构建强大的抽象摘要系统,通过利用深度神经模型和语言结构预测的力量,其摘要可以保持真实的原文。假设摘要的主要关系(例如,由于这些信息(谁对谁做了什么)往往与源文本的信息相同或相似,该项目侧重于开发学习促进保留重要源关系的摘要并阻止包含错误关系的摘要的方法,从而防止摘要显著改变原始文本的含义。研究目标包括以下内容。(a)开发一个抽象的,从句子到句子的摘要器,它联合执行摘要句子的生成和句子结构的分析。(b)开发一个多对一的句子摘要器,明确地模拟在源文本中观察到的提及之间的共指关系。利用深度神经架构的最新发展,这些努力有望改进神经抽象多文档摘要器,以帮助其正确编码源文本并解码摘要序列。(c)设计一种新颖的半自动评估方案,利用问答来评估系统摘要在多大程度上保留了原始文本的含义。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PaniniQA: Enhancing Patient Education Through Interactive Question Answering
- DOI:10.1162/tacl_a_00616
- 发表时间:2023-12-14
- 期刊:
- 影响因子:10.9
- 作者:Cai,Pengshan;Yao,Zonghai;Yu,Hong
- 通讯作者:Yu,Hong
DecipherPref: Analyzing Influential Factors in Human Preference Judgments via GPT-4
- DOI:10.18653/v1/2023.emnlp-main.519
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Ye Hu;Kaiqiang Song;Sangwoo Cho;Xiaoyang Wang;H. Foroosh;Fei Liu
- 通讯作者:Ye Hu;Kaiqiang Song;Sangwoo Cho;Xiaoyang Wang;H. Foroosh;Fei Liu
Generating Coherent Narratives with Subtopic Planning to Answer How-to Questions
通过子主题规划生成连贯的叙述来回答操作方法问题
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Cai, Pengshan;Yu, Mo;Liu, Fei;Yu, Hong
- 通讯作者:Yu, Hong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fei Liu其他文献
Deformation Behavior between Hydraulic and Natural Fractures Using Fully Coupled Hydromechanical Model with XFEM
使用 XFEM 的全耦合流体力学模型研究水力裂缝和天然裂缝之间的变形行为
- DOI:
10.1155/2017/6373957 - 发表时间:
2017-06 - 期刊:
- 影响因子:0
- 作者:
Fei Liu;Zhifeng Luo;Yu Sang - 通讯作者:
Yu Sang
Fabrication of Patterned Boron Carbide Nanowires and Their Electrical, Field Emission and Flexible Properties
图案化碳化硼纳米线的制备及其电学、场发射和柔性性能
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:9.9
- 作者:
H. J. Gao;Fei Liu;Q. Luo;Y. Tian;Q. Zou;C. Li;C. M. Shen;S. Z. Deng;C. Z. Gu - 通讯作者:
C. Z. Gu
Measurement on dipole antenna with light polarized nano-material(PNM) textile reflector
光偏振纳米材料(PNM)织物反射器偶极子天线的测量
- DOI:
10.1109/mwsym.2009.5165885 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Fei Liu;Wen;Zhijun Zhang;Zhenghe Feng;Yaqin Chen;Hui Zhang - 通讯作者:
Hui Zhang
A Key Distribution and Management Scheme for Clustered Ad Hoc Sensor Networks
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Fei Liu - 通讯作者:
Fei Liu
Characterization of basin-scale aquifer heterogeneity using transient hydraulic tomography with aquifer responses induced by groundwater exploitation reduction
利用瞬态水力层析成像技术表征盆地尺度含水层异质性以及地下水开采减少引起的含水层响应
- DOI:
10.1016/j.jhydrol.2020.125137 - 发表时间:
2020-09 - 期刊:
- 影响因子:6.4
- 作者:
Fei Liu;Tian-Chyi Jim Yeh;Yu-Li Wang;Yonghong Hao;Jet-Chau Wen;Wenke Wang - 通讯作者:
Wenke Wang
Fei Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fei Liu', 18)}}的其他基金
CAREER: Neural Transcript Summarization and Induction of Document Structure
职业:神经转录摘要和文档结构归纳
- 批准号:
2303655 - 财政年份:2022
- 资助金额:
$ 49.88万 - 项目类别:
Continuing Grant
CAREER: Neural Transcript Summarization and Induction of Document Structure
职业:神经转录摘要和文档结构归纳
- 批准号:
2143792 - 财政年份:2022
- 资助金额:
$ 49.88万 - 项目类别:
Continuing Grant
RI: Small: Towards Abstractive Summarization That Preserves the Original Meaning
RI:小:走向保留原意的抽象概括
- 批准号:
1909603 - 财政年份:2019
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
RI: Small: Towards Provably Efficient Representation Learning in Reinforcement Learning via Rich Function Approximation
RI:小:通过丰富函数逼近实现强化学习中可证明有效的表示学习
- 批准号:
2154711 - 财政年份:2022
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
RI: Small: Towards Optimal and Adaptive Reinforcement Learning with Offline Data and Limited Adaptivity
RI:小型:利用离线数据和有限的适应性实现最优和自适应强化学习
- 批准号:
2007117 - 财政年份:2020
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
RI: Small: Towards Abstractive Summarization That Preserves the Original Meaning
RI:小:走向保留原意的抽象概括
- 批准号:
1909603 - 财政年份:2019
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
RI: Small: Learning Dynamics and Evolution towards Cognitive Understanding of Videos
RI:小:视频认知理解的学习动态和演化
- 批准号:
1813709 - 财政年份:2018
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
RI: Small: Towards a Formal Theory of Blameworthiness, Intention, and Moral Responsibility
RI:小:走向应受谴责、意图和道德责任的正式理论
- 批准号:
1718108 - 财政年份:2017
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
RI: Small: Extending Verb Semantics with Causality towards Physical World
RI:小:将动词语义与因果关系扩展到物理世界
- 批准号:
1617682 - 财政年份:2016
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
RI: Small: Dynamic Attractor Computing: A Novel Computational Approach Applied Towards Temporal Pattern and Speech Recognition
RI:小型:动态吸引子计算:一种应用于时间模式和语音识别的新颖计算方法
- 批准号:
1420897 - 财政年份:2014
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Towards Modeling Source Separation from Measured Cortical Responses
RI:小型:协作研究:根据测量的皮质反应对源分离进行建模
- 批准号:
1320366 - 财政年份:2013
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Towards Modeling Source Separation from Measured Cortical Responses
RI:小型:协作研究:根据测量的皮质反应对源分离进行建模
- 批准号:
1320260 - 财政年份:2013
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant
RI: Small: Towards Practical Tractability in Constraint Processing
RI:小:实现约束处理的实用易处理性
- 批准号:
1117956 - 财政年份:2011
- 资助金额:
$ 49.88万 - 项目类别:
Standard Grant