Harmonic Maps, Geometric Rigidity, and Non-Abelian Hodge Theory
调和映射、几何刚性和非阿贝尔霍奇理论
基本信息
- 批准号:2304697
- 负责人:
- 金额:$ 45.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In everyday use, maps are representations of Earth's characteristics, providing a straightforward and efficient way to convey information about sizes, shapes, and distances between places, illustrating the spatial arrangement of elements on Earth. Earth is an example of a geometric space where angles and distances can be measured. Another example is Euclidean spaces used to model our physical world. Additionally, non-Euclidean or Riemannian spaces have numerous applications, notably in cosmology, allowing scientists to describe the large-scale structure, curvature, and topology of the universe, and in robotics, providing engineers with a mathematical framework to model the range of motion of robotic systems. Just as cartographers construct maps to reveal spatial information about regions on Earth, mathematicians construct maps between geometric spaces to uncover interesting features and analyze their geometry. In this research project, the principal investigator (PI) will focus on harmonic maps, a special type of maps that minimize a specific measure of energy between geometric spaces. By analyzing harmonic maps, the PI aims to uncover essential properties of various geometric spaces, contributing to a better understanding of the natural world. The mathematical theory of harmonic maps has practical applications in medicine (e.g., medical imaging) and computer science (e.g., computer vision), with potential to further scientific progress and societal welfare. Moreover, the project includes an educational aspect, offering guidance and support to graduate students, post-docs, and early-career mathematicians, especially those underrepresented in STEM fields.Harmonic map theory holds significant interest for mathematicians and physicists, playing a vital role in geometric analysis by serving as analytical objects that incorporate geometric, topological, and algebraic information of a given space. The techniques involving harmonic maps have been successfully applied in various mathematical contexts, yielding important results in rigidity problems, Hodge theory, and Teichmüller theory. The principal investigator (PI) will continue developing the theory of harmonic maps, motivated by its potential applications in different mathematical fields. The primary focus of the proposal revolves around three key areas: (1) Non-Abelian Hodge Theory, aiming to develop non-abelian Hodge theory over smooth quasi-project varieties and connecting topological data of Kahler manifolds to their holomorphic structure; (2) Geometric Rigidity, exploring a geometric approach to study the rigidity of lattices in semisimple Lie groups, particularly non-uniform lattices associated with non-compact manifolds and studying representations of lattices in isometry groups of smooth and singular spaces; (3) Regularity of Harmonic Maps, concentrating on problems related to the regularity theory of harmonic maps into singular targets, with the goal of better understanding singular sets and their potential applications. The research seeks to advance the theory of harmonic maps, unveiling new insights with practical implications in various mathematical fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在日常使用中,地图是地球特征的表示,提供了一种直接有效的方式来传达有关大小,形状和地点之间距离的信息,说明地球上元素的空间排列。地球是一个可以测量角度和距离的几何空间的例子。另一个例子是用于模拟我们的物理世界的欧几里得空间。此外,非欧几里得空间或黎曼空间有许多应用,特别是在宇宙学中,使科学家能够描述宇宙的大尺度结构,曲率和拓扑结构,并在机器人技术中,为工程师提供数学框架来模拟机器人系统的运动范围。就像制图师绘制地图以揭示地球上区域的空间信息一样,数学家在几何空间之间绘制地图以揭示有趣的特征并分析其几何形状。在这个研究项目中,主要研究者(PI)将专注于调和映射,这是一种特殊类型的映射,可以最小化几何空间之间的能量的特定度量。通过分析调和映射,PI旨在揭示各种几何空间的基本性质,有助于更好地理解自然世界。调和映射的数学理论在医学中有实际应用(例如,医学成像)和计算机科学(例如,计算机视觉),具有促进科学进步和社会福利的潜力。此外,该项目还包括一个教育方面,为研究生、博士后和早期职业数学家提供指导和支持,特别是那些在STEM领域代表性不足的数学家。调和映射理论对数学家和物理学家有着重要的兴趣,在几何分析中发挥着至关重要的作用,它作为分析对象,结合了给定空间的几何、拓扑和代数信息。涉及调和映射的技术已成功地应用于各种数学背景,在刚性问题、霍奇理论和泰希米勒理论中产生了重要结果。主要研究者(PI)将继续发展调和映射理论,其动机是它在不同数学领域的潜在应用。该提案的主要重点围绕三个关键领域:(1)非阿贝尔Hodge理论,旨在发展光滑拟投影簇上的非阿贝尔Hodge理论,并将Kahler流形的拓扑数据与其全纯结构联系起来;(2)几何刚性,探索半单李群中格刚性的几何研究方法,特别是与非紧流形相关的非均匀格,并研究光滑和奇异空间的等距群中格的表示;(3)调和映射的正则性,主要研究奇异目标下调和映射的正则性理论,其目的是更好地理解奇异集及其潜在应用。该研究旨在推进谐波映射理论,揭示在各个数学领域具有实际意义的新见解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chikako Mese其他文献
Essential regularity of the model space for the Weil–Petersson metric
Weil-Petersson 度量模型空间的基本规律
- DOI:
10.1515/crelle-2016-0028 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Georgios Daskalopoulos;Chikako Mese - 通讯作者:
Chikako Mese
A variational construction of the Teichmüller map
Teichmüller 地图的变分构造
- DOI:
10.1007/s00526-003-0243-8 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Chikako Mese - 通讯作者:
Chikako Mese
The Plateau Problem in Alexandrov spaces
Alexandrov 空间中的高原问题
- DOI:
10.4310/jdg/1287580967 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Chikako Mese;Patrick R. Zulkowski - 通讯作者:
Patrick R. Zulkowski
He I 10830 A(彩層)での偏光観測例
He I 10830 A(色球层)中的偏振观测示例
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Chikako Mese;Sumio Yamada;大井瑛仁 - 通讯作者:
大井瑛仁
UNIQUENESS THEOREMS FOR HARMONIC MAPS INTO METRIC SPACES
调和映射到度量空间的唯一性定理
- DOI:
10.1142/s0219199702000828 - 发表时间:
2002 - 期刊:
- 影响因子:1.6
- 作者:
Chikako Mese - 通讯作者:
Chikako Mese
Chikako Mese的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chikako Mese', 18)}}的其他基金
Harmonic Maps into Spaces with an Upper Curvature Bound
调和映射到具有上曲率界的空间
- 批准号:
2005406 - 财政年份:2020
- 资助金额:
$ 45.03万 - 项目类别:
Standard Grant
Harmonic maps approach to rigidity problems
解决刚性问题的调和图方法
- 批准号:
1406332 - 财政年份:2014
- 资助金额:
$ 45.03万 - 项目类别:
Standard Grant
Harmonic Maps, Minimal Surfaces, and Rigidity Problems
调和图、最小曲面和刚度问题
- 批准号:
1105599 - 财政年份:2011
- 资助金额:
$ 45.03万 - 项目类别:
Standard Grant
Harmonic maps into and between singlar spaces
谐波映射到奇异空间以及奇异空间之间
- 批准号:
0450083 - 财政年份:2004
- 资助金额:
$ 45.03万 - 项目类别:
Standard Grant
Harmonic maps into and between singlar spaces
谐波映射到奇异空间以及奇异空间之间
- 批准号:
0306212 - 财政年份:2003
- 资助金额:
$ 45.03万 - 项目类别:
Standard Grant
Harmonic Maps and Minimal Surfaces into Spaces of Curvature Bounded from Above
从上方有界的曲率空间中的调和图和最小曲面
- 批准号:
0072483 - 财政年份:2000
- 资助金额:
$ 45.03万 - 项目类别:
Standard Grant
相似国自然基金
基于MAPS单粒子瞬态响应的核应急强场辐射探测与噪声抑制并行处理方法研究
- 批准号:11905102
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
基于MAPS的星载硅径迹探测器及读出电子学原理研究
- 批准号:11773027
- 批准年份:2017
- 资助金额:67.0 万元
- 项目类别:面上项目
大阵列高速MAPS的压缩采样读出策略及电路架构研究
- 批准号:11705148
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
北京谱仪Ⅲ主漂移室内室改进的MAPS探测技术研究
- 批准号:U1232202
- 批准年份:2012
- 资助金额:280.0 万元
- 项目类别:联合基金项目
两栖类皮肤膜活性肽α-MAPs选择性阻抑乳腺癌MCF-7细胞生长的分子机制研究
- 批准号:30970352
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Geometric structures on surfaces and harmonic maps
表面上的几何结构和调和图
- 批准号:
23KJ1468 - 财政年份:2023
- 资助金额:
$ 45.03万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Complex Geometric Properties of Period Maps
周期图的复杂几何性质
- 批准号:
2304981 - 财政年份:2023
- 资助金额:
$ 45.03万 - 项目类别:
Standard Grant
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2022
- 资助金额:
$ 45.03万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2021
- 资助金额:
$ 45.03万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2020
- 资助金额:
$ 45.03万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2019
- 资助金额:
$ 45.03万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2018
- 资助金额:
$ 45.03万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2017
- 资助金额:
$ 45.03万 - 项目类别:
Discovery Grants Program - Individual
Geometric analysis for ideal boundaries of product manifolds, and the study of harmonic maps and Einstein metrics
乘积流形理想边界的几何分析,以及调和映射和爱因斯坦度量的研究
- 批准号:
24654009 - 财政年份:2012
- 资助金额:
$ 45.03万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Geometric representations and symmetries of graphs, maps and other discrete structures and applications in science
图形、地图和其他离散结构的几何表示和对称性及其在科学中的应用
- 批准号:
195353141 - 财政年份:2011
- 资助金额:
$ 45.03万 - 项目类别:
Research Grants