Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
基本信息
- 批准号:RGPIN-2017-05321
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dynamical systems are mathematical models for many problems in science, engineering, economics, finance and other areas. Complicated chaotic behaviors occur for many of these dynamical system models. An absolutely continuous invariant measure (acim) is a powerful tool for the study of chaotic behavior of discrete dynamical system models. An acim measures asymptotic relative frequencies of points of chaotic orbits generated by a discrete dynamical system with any initial point. An orbit of a dynamical system can be very complicated in deterministic sense, however it may not be chaotic in probabilistic or statistical sense. An acim is a very useful mathematical tool for the study of long term behavior and their chaotic nature. How do we know that such an acim exists? If it exists, how can we find acims analytically and numerically? What are properties of these acims. These are interesting, important and challenging questions in Ergodic Theory and Dynamical Systems. My long term objective is to contribute largely for the development of theoretical and computational methods via acims and other dynamics. In the next 5 years, I plan to study a number of chaotic discrete dynamical systems in one and higher dimensions. Firstly, I will study the existence of infinite acims for a family of random maps (closed systems). Moreover, we will study absolutely continuous conditional invariant measures and escape rates of the corresponding open dynamical systems with holes. A random map is a discrete time dynamical system, where one of a number of maps on the state space is selected randomly according to fixed probabilities or position dependent probabilities and applied in each iteration of the process. Random maps have applications in many areas of science and engineering such as in the study of fractals, in modelling interference effects in quantum mechanics, in computing metric entropy, and in forecasting the financial markets. Secondly, I will study dynamics of multi-valued maps. Multi-valued maps play an important role in many area of Science and Engineering such as in chaos synchronization, economics, rigorous effects in quantum mechanics, numerics and differential inclusions. We are interested in existence, approximations and properties of absolutely continuous invariant measures. Thirdly, I will study dynamics of maps with memory which are two dimensional chaotic dynamical systems generated by one dimensional map via a process which uses current and past information of the one dimensional map. There are many practical situations (such as stock market) where these type of two dimensional dynamical systems are useful mathematical models for analyzing various quantities. We will study SRB measures, acims and other dynamics of maps with memory. Finally, I will study the stability and control of the Geometric Markov Renewal Processes (GMRP). A GMRP is a process for the study of option prices in finance.
动力系统是科学、工程、经济、金融等领域中许多问题的数学模型。这些动力学系统模型中的许多都存在复杂的混沌行为。绝对连续不变测度(acim)是研究离散动力系统模型混沌行为的有力工具。acim测量离散动力系统以任意初始点产生的混沌轨道点的渐近相对频率。动力系统的轨道在确定性意义上可能非常复杂,但在概率或统计意义上可能不是混乱的。acim是研究长期行为及其混沌性质的非常有用的数学工具。我们怎么知道这样的acim存在?如果它存在的话,我们如何用解析和数值的方法找到acims呢?这些活性中心的性质是什么。这些都是遍历理论和动力系统中有趣的、重要的和具有挑战性的问题。我的长期目标是通过acims和其他动力学为理论和计算方法的发展做出贡献。在接下来的5年里,我计划研究一些一维和更高维的混沌离散动力系统。首先,我将研究一类随机映射(闭系统)的无穷顶点的存在性。此外,我们还将研究相应的带洞开动力系统的绝对连续条件不变测度和逃逸率。随机映射是离散时间动态系统,其中根据固定概率或位置相关概率随机选择状态空间上的多个映射中的一个,并应用于过程的每次迭代中。随机映射在科学和工程的许多领域都有应用,如分形研究、量子力学中的干涉效应建模、度量熵计算和金融市场预测。其次,研究多值映射的动力学。多值映射在许多科学和工程领域中起着重要的作用,如混沌同步、经济学、量子力学中的严格效应、数值计算和微分包含等。我们感兴趣的是绝对连续不变测度的存在性、近似性和性质。第三,研究了具有记忆的映射的动力学,它是由一维映射通过利用一维映射的当前和过去信息的过程产生的二维混沌动力系统。有许多实际情况(如股票市场),这些类型的二维动力系统是有用的数学模型,用于分析各种数量。我们将研究SRB措施,acims和其他动态的地图与记忆。最后,我将研究几何马尔可夫更新过程(GMRP)的稳定性和控制。GMRP是一个研究金融期权价格的过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Islam, MdShafiqul其他文献
Islam, MdShafiqul的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Islam, MdShafiqul', 18)}}的其他基金
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于MAPS单粒子瞬态响应的核应急强场辐射探测与噪声抑制并行处理方法研究
- 批准号:11905102
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
用于顶点探测器的低物质量、高空间分辨率硅像素探测器模型的性能研究
- 批准号:11875274
- 批准年份:2018
- 资助金额:66.0 万元
- 项目类别:面上项目
基于MAPS的星载硅径迹探测器及读出电子学原理研究
- 批准号:11773027
- 批准年份:2017
- 资助金额:67.0 万元
- 项目类别:面上项目
大阵列高速MAPS的压缩采样读出策略及电路架构研究
- 批准号:11705148
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
高能物理探测器中CMOS像素传感器阵列低功耗高速读出方法研究
- 批准号:11605071
- 批准年份:2016
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
利用耗尽型CPS提高顶点探测器空间分辨精度的研究
- 批准号:11605217
- 批准年份:2016
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
面向未来正负电子对撞机顶点探测器的CMOS像素探测器芯片设计和架构的研究
- 批准号:11505207
- 批准年份:2015
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
北京谱仪Ⅲ主漂移室内室改进的MAPS探测技术研究
- 批准号:U1232202
- 批准年份:2012
- 资助金额:280.0 万元
- 项目类别:联合基金项目
两栖类皮肤膜活性肽α-MAPs选择性阻抑乳腺癌MCF-7细胞生长的分子机制研究
- 批准号:30970352
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
重组生物粘合剂蛋白质的研制
- 批准号:50973046
- 批准年份:2009
- 资助金额:38.0 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of neural circuit dynamics in working memory and decision-making
工作记忆和决策中的神经回路动力学机制
- 批准号:
10705962 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Dynamics of Hippocampal Inputs in Alzheimer's Disease
阿尔茨海默病中海马输入的动态
- 批准号:
10784380 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Encoding properties of bilateral CA3 inputs and their contribution to the formation and dynamics of CA1 spatial representations in novel environments
双边 CA3 输入的编码特性及其对新环境中 CA1 空间表示的形成和动态的贡献
- 批准号:
10510787 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Mesoscale dynamics underlying expectation bias in the orbitofrontal cortex
眶额皮层期望偏差的中尺度动力学
- 批准号:
10571994 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Project 3 - Dynamics of latent HIV-1 reservoirs: High resolution antigenic mapping and strategies to block rebound
项目 3 - 潜在 HIV-1 储存库的动态:高分辨率抗原图谱和阻止反弹的策略
- 批准号:
10506669 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Characterizing excitatory synapse in vivo structural dynamics
表征兴奋性突触体内结构动力学
- 批准号:
10708899 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
The Dynamics of Neural Representations for Distinct Spatial Contexts and Memory Episodes
不同空间背景和记忆片段的神经表征的动力学
- 批准号:
10620709 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Identify the schemata by which subcortical signals influence frontal cortical dynamics and cognitive behaviors
识别皮层下信号影响额叶皮层动态和认知行为的图式
- 批准号:
10546515 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Endogenous barcoding to determine complex dynamics of adult neurogenesis in aging and Alzheimer's disease
内源条形码确定衰老和阿尔茨海默病中成人神经发生的复杂动态
- 批准号:
10846200 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Identify the schemata by which subcortical signals influence frontal cortical dynamics and cognitive behaviors
识别皮层下信号影响额叶皮层动态和认知行为的图式
- 批准号:
10294404 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别: