Assessing and Detecting Components Suffering from Sub-optimal Performance for a Web-based CRM System
评估和检测基于 Web 的 CRM 系统性能不佳的组件
基本信息
- 批准号:530840-2018
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Engage Grants Program
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Performance is one of the crucial factors related to the success and the sustainability of software systems.**Failure to provide satisfactory performance would result in customers' abandonment and loss of revenue. For**example, Amazon reported that one second delay in loading their webpages could result in $1.6 billion loss in**their sales revenue annually. However, it is very challenging to find areas to improve and optimize system**performance due to limitations of existing tools. Instead of directly pin-pointing the sub-optimal components,**existing performance profiling tools can only provide resource or timing information for each individual**component. As components consume processing time and resources while executing the actual tasks, they**might not be the areas suffering from sub-optimal performance. More sophisticated and in-depth analysis is**required to detect potential areas for performance improvement.**Sparky is a web-based software program responsible for CRM (Customer Relation Management) and quoting**for high speed ink-jet printer jobs for Copywell. Existing process is complex and time consuming. Improve the**efficiency and scalability of Sparky would greatly increase the amount of tasks that can be handled, and hence**results in an increase in the Copywell's income. We process a three-step process to evaluate and improve the**architecture of Sparky. First, we will characterize the workload of Sparky by surveying the domain experts and**mining the existing historical usage data. Second, we will assess Sparky's performance by executing**performance tests and building performance models. Third, various approaches (architectural-level analysis,**design/code-level analysis, and performance anti-pattern detection) will be applied to detect sub-optimal**performance components based on the resulting models.
性能是与软件系统的成功和可持续性有关的关键因素之一。**未能提供令人满意的性能将导致客户放弃和收入损失。例如,亚马逊报告说,加载其网页的一秒钟延迟可能会导致每年16亿美元的销售收入损失。但是,由于现有工具的限制,寻找改进和优化系统性能的领域是非常具有挑战性的。 **现有的性能分析工具无需直接固定子最佳组件,只能为每个单独的**组件提供资源或计时信息。由于组件在执行实际任务时会消耗处理时间和资源,因此它们可能并不是遭受次优性能的领域。需要更复杂和深入的分析**才能检测潜在的性能改进领域。现有过程很复杂且耗时。提高Sparky的**效率和可扩展性将大大增加可以处理的任务数量,从而导致复制Well的收入增加。我们处理一个三步的过程,以评估和改善Sparky的**体系结构。首先,我们将通过调查域专家进行调查并**挖掘现有的历史用法数据来表征Sparky的工作量。其次,我们将通过执行**绩效测试和建筑绩效模型来评估Sparky的性能。第三,将采用各种方法(建筑级分析,**设计/代码级分析和性能反图案检测),以根据所得模型来检测次优**性能组件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiang, ZhenMing其他文献
Jiang, ZhenMing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiang, ZhenMing', 18)}}的其他基金
Leveraging System Behaviour Data to Improve the Process of Load Testing Large Scale Software Systems
利用系统行为数据改进大型软件系统的负载测试过程
- 批准号:
RGPIN-2014-06673 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Leveraging System Behaviour Data to Improve the Process of Load Testing Large Scale Software Systems
利用系统行为数据改进大型软件系统的负载测试过程
- 批准号:
RGPIN-2014-06673 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Leveraging System Behaviour Data to Improve the Process of Load Testing Large Scale Software Systems
利用系统行为数据改进大型软件系统的负载测试过程
- 批准号:
RGPIN-2014-06673 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Verifying the scalability and reliability of microservices for a large-scale e-commerce platform
验证大型电商平台微服务的可扩展性和可靠性
- 批准号:
499513-2016 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Leveraging System Behaviour Data to Improve the Process of Load Testing Large Scale Software Systems
利用系统行为数据改进大型软件系统的负载测试过程
- 批准号:
RGPIN-2014-06673 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Leveraging System Behaviour Data to Improve the Process of Load Testing Large Scale Software Systems
利用系统行为数据改进大型软件系统的负载测试过程
- 批准号:
RGPIN-2014-06673 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
流形空间下基于弱标签双向域自适应的深度烟雾成分检测
- 批准号:62262027
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
MXene/天然橡胶柔性电极用于汗液关键成分检测及抗干扰性能研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国热带地区狭义丝盖伞属的物种多样性及毒性成分检测
- 批准号:32260005
- 批准年份:2022
- 资助金额:33.00 万元
- 项目类别:地区科学基金项目
基于可穿戴数字微流控的汗液成分多参数并行检测方法研究
- 批准号:52275566
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
MXene/天然橡胶柔性电极用于汗液关键成分检测及抗干扰性能研究
- 批准号:22204174
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Detecting genes resposible for tuberous root traits in radish
检测与萝卜块根性状相关的基因
- 批准号:
18K14460 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Form measurement of the next-generation optical components by the dimension-conversion-type multi-beam optical angle sensor capable of detecting multiple information
利用可检测多种信息的尺寸转换型多光束光学角度传感器进行下一代光学元件的形状测量
- 批准号:
18H01345 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Detecting a local hot spot using a varying coefficient model for spatial-temporal data and its application to survival data
使用时空数据的变系数模型检测局部热点及其在生存数据中的应用
- 批准号:
17K00052 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of vibrational analysis for detecting early-stage spondylolysis in adolescent.
开发用于检测青少年早期椎弓峡部裂的振动分析。
- 批准号:
16K01771 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Detecting phrase similarity based on compositional symbolic computation and statistical knowledge acquisition using a large-scale corpus.
使用大规模语料库基于组合符号计算和统计知识获取来检测短语相似度。
- 批准号:
15K16045 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Grant-in-Aid for Young Scientists (B)